
Eurographics Symposium on Rendering 2013
Nicolas Holzschuch and Szymon Rusinkiewicz
(Guest Editors)

Volume 32 (2013), Number 4

Sorted Deferred Shading for Production Path Tracing

Christian Eisenacher Gregory Nichols Andrew Selle Brent Burley

Walt Disney Animation Studios

Abstract

Ray-traced global illumination (GI) is becoming widespread in production rendering but incoherent secondary
ray traversal limits practical rendering to scenes that fit in memory. Incoherent shading also leads to intractable
performance with production-scale textures forcing renderers to resort to caching of irradiance, radiosity, and
other values to amortize expensive shading. Unfortunately, such caching strategies complicate artist workflow, are
difficult to parallelize effectively, and contend for precious memory. Worse, these caches involve approximations
that compromise quality. In this paper, we introduce a novel path-tracing framework that avoids these tradeoffs.
We sort large, potentially out-of-core ray batches to ensure coherence of ray traversal. We then defer shading of
ray hits until we have sorted them, achieving perfectly coherent shading and avoiding the need for shading caches.

Categories and Subject Descriptors (according to ACM
CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

Path-traced GI promises many benefits for production ren-
dering: it can produce richer, more plausible results with far
fewer lights, and avoids the data-management burden asso-
ciated with huge point clouds and deep shadow maps. While
this often results in better images and higher productivity,
rendering performance degrades significantly as unique ge-
ometric and texture detail scales beyond the capacity of main
memory. Hence, existing production renderers focus on trac-
ing fewer rays and shading fewer points, and encourage the
use of lighting and shading caches and geometric instancing.
Such measures compromise artistic intent.

As ray-tracing research improves raw geometry intersec-
tion, incoherent shading becomes a relatively larger problem
[CFLB06]. In particular, incoherent access to production-
scale texture data incurs frequent cache-misses, leading to
memory, disk and network delays that dominate run-time. Ir-
radiance and radiosity caches [KTO11, CHS∗12] attempt to
mitigate this, though their inherent non-directionality makes
them suitable only for perfectly diffuse surfaces. Conse-
quently, common practice separates integration strategies
for diffuse rays, specular rays, and caustics, re-complicating
artist workflow. Worse, these approaches are difficult to
scale to multi-core architectures because of synchronization,

NUMA effects and load-balancing. Thus, it is desirable to
avoid caches and instead seek to ensure coherent shading.

In this paper, we present a streaming ray-tracer, capable
of performing multi-bounce GI on production-scale scenes
without resorting to shading caches or instancing. To achieve
this, we introduce a novel two-stage ray sorting framework.
First, we sort large, potentially out-of-core ray batches to
ensure coherence. Working with large batches is essential
to extract coherent ray groups from complex scenes. Sec-
ond, we sort ray hits for deferred shading with out-of-
core textures. For each batch we achieve perfectly coherent
shading with sequential texture reads, eliminating the need
for a texture cache. Our approach is simple to implement and
compatible with most scene traversal strategies. We demon-
strate the effectiveness of our two-stage sorting with out-of-
core ray batches and compare our results with two state-of-
the-art production ray tracers, Pixar’s PhotoRealistic Ren-
derMan and Solid Angle’s Arnold.

2. Related Work

Much research focuses on efficient recursive traversal for
both coherent and incoherent rays. Wald et al. [WSBW01]
introduced packets which were improved by others [RSH05,
BWB08, ORM08]. Several researchers proposed eliminat-
ing packets in favor of SIMD traversal of hierarchies with
a branching factor equal to the SIMD width [DHK08,EG08,
WBB08]. Benthin et al. [BWW∗12] proposed a hybrid
single-ray/packet approach. However, incoherent rays and

c© 2013 Disney
This is a preprint of the official 2013 Eurographics Symposium on Rendering. The final
version is available in the Eurographics Digital Archive http://digilib.eg.org/.

http://diglib.eg.org/


Eisenacher et al. / Sorted Deferred Shading for Production Path Tracing

Figure 1: Scene rendered with production shaders in 35 minutes (5 ray sorting, 12.5 traversal, 1.5 hit point sorting, 15 shading,
1 system overhead). 1920×900, 512 SPP, max. path length 5; 133 M triangles and 15.6 GB unique textures.

small packets still incur high memory latency costs during
traversal, restricting scenes to fit in memory.

To improve coherence, many researchers use ray queues
to reorder intersection tests. This is referred to variously
as breadth-first ray tracing [Han86, LMW90], ray reorder-
ing [PKGH97], and ray streaming [GR08, Tsa09]. Rays
have been queued at grid boundaries [PKGH97, NO97,
RCJ99, WSBW01, PFHA10, Bik12] or scene hierarchy
nodes [BBS∗09, Tsa09, NFLM07] to amortize object access
cost. Ray queues have also been used for distributed render-
ing to leverage more compute resources or handle scenes that
don’t fit in memory on a single computer [WSBW01,KS02].
Ray queues have been scheduled in approximate front-to-
back traversal order [Tsa09], and prioritized by genera-
tion [KS02] or for optimal data cache usage [BBS∗09].

S
ec

on
da

ry
 r

ay
s

Primary rays

Sorted ray batches

Scene traversal

Hit points 

Sorted hit groups

Shading

Hit point sorting

Ray sorting

Emission splats

Rays

Sorted ray
batches

-X

Compression & binning

Ready stack

Decompression & sorting

Secondary
rays

-Y -Z

+X +Y +Z

Directional bins

Figure 2: Left: We ensure coherent path tracing using two
sorting stages. Right: An exploded view of ray sorting.

To extract more coherence, other researchers reorder large
ray batches, either full generations or fractions thereof as
limited by memory. Arvo and Kirk [AK87] organize rays
into a 5D spatio-directional beam tree and then intersect
them against an object stream. Garanzha and Loop [GL10]
use a uniform, user-specified grid to group rays in 5D
bins that require scene-specific calibration. Moon et al.
[MBK∗10] reorder rays based on approximate hit points
traced against a carefully constructed, simplified version of
the scene. Hanika et al. [HKL10] record the N nearest patch
bounding box hits for each ray in a large batch then inter-
sect each patch with its candidate rays. Top-level traversal
remains incoherent, which may be an issue for scenes with
many patches; the fixed depth complexity means that if more
than N patch bounding boxes overlap then the correct inter-
section point may not be found immediately.

We are interested in efficient shading for raytraced global
illumination. While many researchers demonstrate impres-
sive ray-per-second performance or consider out-of-core oc-
clusion queries for production scale geometry [PFHA10], as
far as we know only a few [PKGH97, CFLB06, BBS∗09]
consider out-of-core texture access, and many do not men-
tion textures at all. Hanika et al. [HKL10] sort shading
points by material, but only present results for in-core mea-
sured BRDF data where the sorting was shown to be un-
necessary. Hoberock et al. [HLJH09] compact, reorder and
schedule a stream of deferrred shader invocations on a GPU.
This reduces SIMD divergence by calling a small number of
shaders coherently, but does not address production scale ge-
ometry, textures, or the number and complexity of shaders.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



Eisenacher et al. / Sorted Deferred Shading for Production Path Tracing

3. Sorted Path-Tracing

An overview of our path-tracing pipeline is given on the left
of Figure 2. Starting with primary rays we perform ray sort-
ing: We bin rays by direction and group them into large,
sorted ray batches of fixed size, typically about 30-60 M rays
per batch. The OS streams inactive ray batches to a local
SSD until the system is ready to sort and trace the next batch.

Next, we perform scene traversal, one sorted ray batch
at a time. Any hierarchical depth- or breadth-first traversal
strategy will likely benefit from ray reordering. We currently
use a two-level quad-BVH [Tsa09] with streaming packet-
traversal [GL10] in the top level, and naïve single-ray traver-
sal in the bottom. We exploit the fact that our ray batches are
directionally coherent to perform approximate front-to-back
traversal at each node. The result of traversal is a list of hit
points (one per ray).

Next, hit point sorting organizes ray hits by shading con-
text. Each subdivision mesh is associated with one or more
texture-files containing a per-face texture [BL08] for each
layer; thus, a full shading context consists of a mesh ID and
a face ID. We group hit points by mesh ID, and then sort
each group by face ID for coherent texturing and shading.

Shading happens in parallel with each thread processing
a different mesh. If a shading task has many hit points, it is
partitioned into sub-tasks, further increasing parallelism. If
an object or hit point is found to be emissive, its emission
is splatted into the image buffer. The shader also feeds sec-
ondary rays back into ray sorting to continue ray paths.

3.1. Ray Sorting

As illustrated on the right of Figure 2, we compress rays
after they are created, and add them to the end of one of six
cardinal direction bins in a parallel and lock-free manner.
Each bin holds a single batch of rays in a memory-mapped
file of fixed capacity. For each thread we first add rays to one
of six small local buffers based on the major ray direction.
When a local buffer is full, we atomically increment the size
of the corresponding bin and memcpy() the local rays.

As we fill the bins, the operating system (OS) streams the
rays to a local solid state disk (SSD). When the incremented
size exceeds a bin’s capacity we lock on a mutex, close the
file, add its filename to a ready stack, and start a new empty
bin in its place. When the current batch has finished traversal
and shading, we pop the next batch filename from the ready
stack, and decompress, sort, and place the rays in a global

12 bytes 8 4 4 2 2 4

origin direction
(octrahedral)

weight
(RGB9e5)

pixel
ID

sample
ID

tNear
ray

diameter

Figure 3: Layout of a compressed ray with 36 bytes per ray.

active ray buffer. To minimize I/O waits we stream in the
next batch as we process the current one.

To sort ray batches we perform recursive median parti-
tioning along the longest axis of the current subset at each
step. We first partition based on ray origins until we reach
subset of no more than 4096 rays. Then we partition based
on ray directions until we obtain groups of 64 rays. During
traversal each 64-ray leaf group forms a coherent ray packet.

Each ray represents the last segment of a path starting on
the image plane. We store a minimal amount of information
per path, and further compress it, using lossless octahedral
normals [MSS∗10] for ray directions, and the shared expo-
nent RGB9e5 format for the aggregate path weight. Overall
we store 36 bytes per ray as shown in Figure 3. We store
compressed rays in an array-of-structs layout, which is con-
venient for streaming them to disk as they are generated.
During decompression we restore the ray data to floats, con-
vert it to a more efficient structs-of-arrays layout, and pre-
compute additional values that are beneficial for traversal.

3.2. Deferred Shading

After traversal, each ray in the active ray buffer has a cor-
responding ray hit point consisting of differential geometry,
mesh ID, face ID, and face UV. We first group hit points by
mesh ID using a CPU parallel radix sort [SHG09]. Then we
dispatch one shading task for each group of hit points to run
in a separate thread. At the start of each shading task, we
pre-sort the hit points by face ID, so that the shading order
exactly matches the on-disk order of the per-face textures.

Because each mesh face is touched at most once when
shading a ray batch, all shader inputs, including texture
maps, are only accessed once. This amortizes per-file tex-
ture costs (opening the file over the network), and per-face
texture costs (reading and decompressing a block of texels)
perfectly for each batch. Further this access is coherent and
sequential, so prefetching of subsequent per-face textures is
trivial—completely eliminating the need for texture caches.

This is beneficial, as it frees memory for use in streaming
additional active rays or storing more unique in-core geome-
try. Moreover, maintaining a large cache across multiple ray
batches does not necessarily improve performance anyway;
in production-scale scenes with many large textures, subse-
quent batches are unlikely to use the same textures at the
same resolutions. In these cases, the overhead of managing
the cache can actually decrease performance.

4. Results

We validate our method on test scenes with different levels
of geometric and shading complexity. Each example limits
paths to length 4, 5, or 6 (i.e. 2, 3, or 4 “bounces of indi-
rect”). Our shader creates one reflection ray, except on the
first reflection, where it creates four BRDF samples and one

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



Eisenacher et al. / Sorted Deferred Shading for Production Path Tracing

Figure 4: Interior scene: 818×580, 1024 SPP, path length
6; 70.5 M triangles, 13.6 GB unique textures; 68 minutes.

light sample. Textures are stored compressed on a texture
server. We render using 12 threads on a 12-core Xeon 5675
system with 48 GB memory.

4.1. Interior Scene

Figure 4 shows a production interior scene lit by a single
area light, demonstrating rich global illumination with a
maximum path length of six. Each material consists of four
texture layers totaling 13.6 GB - small compared to pro-
duction assets that are often authored with dozens of tex-
ture layers and masks. To focus on texturing cost, we use
simple Lambertian reflectance and simple geometry. Specif-
ically, we uniformly subdivide 2710 Catmull-Clark subdivi-
sion surfaces with 551 k faces into 70.5 M triangles. Figure 4
is rendered with 1024 samples per pixel (SPP), but timings
use only 64 SPP to keep the unsorted render times tractable.

In Figure 5, we analyze the impact of the two sorting
stages. Disabling both, our performance is similar or worse
than other production renderers (see Section 4.3). Sorting
just the rays improves both traversal and shading perfor-

no sorting sort rays sort hits sort both
0

100

200

300

400

500

600

700

800

900

Ti
m

e
(m

in
ut

es
)

unaccounted
shading
hit sorting
traversal
ray sorting

Figure 5: Interior scene with a single texture layer. Sorting
significantly reduces shading time (the dominant cost) due
to more coherent texture lookups.

Figure 6: Top: an artistic view of the city scene, highlighting
its texture detail. Bottom: the scene as rendered in the tests.
The red circle highlights the rooftop from the top image.

mance. Sorting just the hit points during deferred shading
dramatically improves texturing performance, but yields no
benefits for traversal. Sorting both rays and hit points pro-
duces the best performance, with negligible cost for sorting.

Figure 7 explores how larger ray batches extract more
coherence and thus improve rendering performance of the
scene. While increasing the ray batch size from 215 to
225 yields a significant 5× speed improvement in traversal
alone, the relatively more expensive shading component im-
proves 20×.

215 217 219 221 223 225

Batch Size

0

20

40

60

80

100

120

140

160

180

Ti
m

e
(m

in
ut

es
)

unaccounted
shading
hit sorting
traversal
ray sorting

Figure 7: Interior scene with single texture layer. Larger
ray batches allow our method to discover more coherence
through sorting, leading to better performance.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



Eisenacher et al. / Sorted Deferred Shading for Production Path Tracing

4.2. City Scene

Figure 6 depicts a procedural city scene lit by a sky dome
and a single area light. It consists of 51.6 k meshes with a
total of 53 M cage faces (106 M triangles), where building
templates are duplicated on disk rather than instanced. It is
also more interesting than the interior scene because of its
more complex base geometry (53 M cage faces instead of
551 k), increased depth complexity, and its larger resolution
- significantly taxing our out-of-core batch system. For in-
creased challenge, we also use our full production shader
with eight color layers (totaling 21.6 GB of high-resolution
texture data).

This setup increases traversal cost, shader computation
per hit, and texture reads. Moreover, this setup features many
more objects and hence many more texture files, which we
must re-open over the network for each batch.

As Figure 8 illustrates, texture access dominates render
time even more, emphasizing the importance of coherent
texture access in production scale rendering. As in the pre-
vious example, both traversal and render time improve con-
siderably with sorting and larger batch sizes. With the ad-
ditional workload in our system, we observe significant im-
provements for larger batch sizes: even the apparently small
improvement between 223 and 225 is actually a 33% reduc-
tion in overall render time. This suggests that increasing
batch size even more could be beneficial.

4.3. Comparison with Production Renderers

In Figure 9, we compare render times of the interior scene
for our method vs two leading production renderers. Ray
counts and sampling strategies were matched as closely as
possible, and all advanced features such as adaptive sam-
pling, radiosity caching, etc., were turned off to isolate raw
intersection and shading performance. The built-in ptexture
shadeop was used in PRMan and a comparable shader node
was implemented in Arnold using the same libPtex library.

215 217 219 221 223 225

Batch Size

0

50

100

150

200

Ti
m

e
(m

in
ut

es
)

unaccounted
shading
hit sorting
traversal
ray sorting

Figure 8: City scene with eight texture layers. Large ray
batches allow our method to extract more coherence and sig-
nificantly improve shading and traversal times.

Both were configured to cache 1000 texture files and 100MB
per thread, a generous cache size for 2710 texture files per
layer. Notably, our method does not use a persistent texture
cache, and requires reopening each texture file over the net-
work each time a given surface is shaded.

Rendering performance without textures was dominated
by ray traversal time and was very similar between the ren-
derers (9.8, 10.7, 8.7 minutes for Arnold, PRMan, and our
method, respectively). When textures were added, the ren-
derers without sorting performed poorly, exhibiting a super-
linear increase in cost for each additional texture layer. With
our method, each additional texture layer added a modest
linear cost of roughly 52 seconds. For four texture layers,
render times were 1094, 214, and 11.2 minutes for Arnold,
PRMan, and our method. Without sorting, our render times
degenerated to 819 minutes, around 70× slower.

4.4. Resource Usage

Figure 10 explores system resource usage. With 46.2 GB
available on our test machine (left column), the geometry of
the interior scene, its four texture layers, and all ray batches
fit entirely in core, yielding good CPU utilization. Although
the OS speculatively writes all ray batches to the SSD, it
can cache them in memory and never has to read them back.
Similarly it is able to serve most texture files from cache af-
ter some initial network traffic to the texture servers.

To force our renderer out-of-core, we launch a simple
“memhog” application that allocates and locks the majority
of memory, leaving only 16.2 GB available (right column).
Without sufficient space for OS caches we now observe addi-
tional SSD reads as we must stream the ray batches back into
memory. Similarly, while the OS caches some of the early
texture reads, we observe more traffic to the texture servers
once the renderer reaches its maximum memory footprint.

In the out-of-core scenario, CPU utilization is interrupted
by bursts of low utilization: the OS cannot buffer and sched-

0 1 2 3 4
Texture layers

0

50

100

150

200

250

300

Ti
m

e
(m

in
ut

es
)

Arnold
PRMan
Our method
Our method (16GB)

Figure 9: Comparing texture performance of our method
against production renderers on the interior scene.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



Eisenacher et al. / Sorted Deferred Shading for Production Path Tracing

ule the slower SSD writes as effectively. The interior scene is
so fast to trace and shade that we cannot hide the I/O latency
of streaming ray batches from disk entirely, and there is
room for improvement prefetching textures from the servers.
However, we observe only a modest increase in render time:
from 8.7 to 14.5 minutes for a single layer and from 11.2
to 17.7 minutes for four texture layers. With only one ad-
ditional GB available, the latter reduces to 14 minutes, sug-
gesting that even a small amount of OS cache is beneficial.

5. Discussion and Future Work

Larger ray batches increase efficiency thanks to added co-
herence discovered by sorting. However, there is a trade-
off between performance gained from more coherency, and
performance lost by ray memory usage starving other parts
of the system, such as the geometry or OS cache. For our
scenes and test system, 225 was the largest practical batch
size; larger batch sizes may be beneficial for systems with
more memory. Perhaps the most significant benefit of shad-
ing rays in such massive batches is that it enables the use of
high detail textures during path tracing. However, to handle
large ray batches our method traces rays one segment-at-a-
time, making certain existing techniques more challenging
to apply.

Currently our renderer employs naïve forward path trac-
ing, a well-understood and widely used method. This re-
quires many samples to resolve difficult light paths, so other
researchers employ bidirectional techniques. Such methods
typically require full light paths, precluding their use in our
framework without modification. However, two recent tech-
niques [GKDS12, HPJ12] combine sampling of light paths
with eye paths in a way that, as illustrated on Figure 6
in [GKDS12], can be performed a segment at a time, without
access to full paths.

Similar tradeoffs exist in shading, where post-hit tech-
niques like radiance closures fit well with recursive ray trac-
ing but would be difficult to apply in our system without
modification. Kato and Saito [KS02] address this by saving
and restoring shader state at significant memory cost, but it is
not clear whether we could do the same without fine-grained
ray queues, which would likely destroy our coherence. Even
so, we believe our performance gains will motivate research
into compatible approaches to shading.

Not all of our choices imply compromise. For example,
though all the tests in this paper use Ptex [BL08], this is
not required. Our method can be formulated equally well
in the context of conventional texture storage methods. In
particular, atlased models could be accessed in groups sorted
by subimage and UV order.

Finally, due to the coherence afforded by our method, we
believe it lends itself particularly well to out-of-core render-
ing of scenes with massive amounts of geometry. While Fig-
ure 10 shows that there is room for improvement in resource

utilization, our preliminary experiments are encouraging: we
rendered the procedural city scene with 260 k unique meshes
(530 M triangles) in 2:43 hours for 64 SPP, and in 16 hours
for 512 SPP (shown in Figure 11). An even larger scene with
2.6 M meshes (5.4 G triangles on disk) rendered 64 SPP in
15 hours. In both cases we only used a single texture layer,
and though our current approach is fairly naïve, we observed
a very modest 2× increase of total render time for going out-
of-core with geometry. These initial experiments are a very
promising basis for future work.

6. Conclusion

We have presented a novel approach to efficiently path-trace
global illumination on production-scale scenes that use out-
of-core texture maps. We have demonstrated that sorting
large batches of rays using out-of-core ray streaming ex-
tracts a much greater degree of coherence than is possible
with smaller ray batches, and that sorting ray hit points be-
fore shading avoids the need for a texture cache. Moreover,
we believe that the pairing of these two sorting strategies is
the key to adoption of GI without artistic compromise.

Acknowledgements

We would like to thank Chuck Tappan for his enthusiastic
support of this work, and for lighting and texturing all the
scenes in the paper. Thanks also to John Huikku and Konrad
Lightner for providing data for the city scene, and Lawrence
Chai for his input on the paper. Finally, we would like to
thank our anonymous reviewers for their insightful and con-
structive comments, which greatly improved the final ver-
sion of this paper.

References
[AK87] ARVO J., KIRK D.: Fast ray tracing by ray classification.

In Proc. of SIGGRAPH (1987).

[BBS∗09] BUDGE B., BERNARDIN T., STUART J. A., SEN-
GUPTA S., JOY K. I., OWENS J. D.: Out-of-core data manage-
ment for path tracing on hybrid resources. In Computer Graphics
Forum (2009).

[Bik12] BIKKER J.: Improving data locality for efficient in-core
path tracing. In Computer Graphics Forum (2012).

[BL08] BURLEY B., LACEWELL D.: Ptex: per-face textures for
production rendering. In Proc. of EGSR (2008).

[BWB08] BOULOS S., WALD I., BENTHIN C.: Adaptive ray
packet reordering. In Proc. of Interactive Ray Tracing (2008).

[BWW∗12] BENTHIN C., WALD I., WOOP S., ERNST M.,
MARK W. R.: Combining single and packet-ray tracing for ar-
bitrary ray distributions on the Intel MIC architecture. Trans. on
Visualization and Computer Graphics (2012).

[CFLB06] CHRISTENSEN P. H., FONG J., LAUR D. M., BATALI
D.: Ray tracing for the movie Cars. In Proc. of Interactive Ray
Tracing (2006).

[CHS∗12] CHRISTENSEN P. H., HARKER G., SHADE J., SCHU-
BERT B., BATALI D.: Multiresolution radiosity caching for ef-
ficient preview and final quality global illumination in movies.
Tech. rep., Pixar, 2012.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



Eisenacher et al. / Sorted Deferred Shading for Production Path Tracing

0 100 200 300 400 500 600
Time (s)

0

10

20

30

40

50

N
e
tw
o
rk
re
a
d
(M
B
/s
)

0 100 200 300 400 500 600
Time (s)

0

10

20

30

40

50
M
e
m
o
ry
U
se
(G
B
)

Total (47.1GB)

Available (46.2GB)

OS cache

Application

0 100 200 300 400 500 600
Time (s)

0

20

40

60

80

100

C
P
U
U
til
iz
a
tio
n
(%
)

0 100 200 300 400 500 600
Time (s)

0

50

100

150

200

250

D
is
k
re
a
d
(M
B
/s
)

0 100 200 300 400 500 600
Time (s)

0

50

100

150

200

250

D
is
k
w
ri
te
(M
B
/s
)

0 200 400 600 800 1000
Time (s)

0

20

40

60

80

100

C
P
U
U
til
iz
a
tio
n
(%
)

0 200 400 600 800 1000
Time (s)

0

10

20

30

40

50

M
e
m
o
ry
U
se
(G
B
)

Total (47.1GB)

Available (16.2GB)

OS cache

Application

0 200 400 600 800 1000
Time (s)

0

10

20

30

40

50

N
e
tw
o
rk
re
a
d
(M
B
/s
)

0 200 400 600 800 1000
Time (s)

0

50

100

150

200

250

D
is
k
re
a
d
(M
B
/s
)

0 200 400 600 800 1000
Time (s)

0

50

100

150

200

250
D
is
k
w
ri
te
(M
B
/s
)

Figure 10: System profile during rendering of the interior scene with 4 textures. Left column: with 46.2 GB of available memory,
ray batches and textures are cached by the OS, and minimal disk/network reads are required. Right column: restricting available
memory to 16.2 GB prevents OS caching, requiring local reads for ray batches and network reads for texture data. Spikes
correspond to ray batches being processed.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



Eisenacher et al. / Sorted Deferred Shading for Production Path Tracing

Figure 11: Out-of-core city scene: 4096×1716, 512 SPP, path length 4; 530 M triangles, no instancing, 16 hours.

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow
bounding volume hierarchies for fast SIMD ray tracing of inco-
herent rays. In Computer Graphics Forum (2008).

[EG08] ERNST M., GREINER G.: Multi bounding volume hier-
archies. In Proc. of Interactive Ray Tracing (2008).

[GKDS12] GEORGIEV I., KŘIVÁNEK J., DAVIDOVIČ T.,
SLUSALLEK P.: Light transport simulation with vertex connec-
tion and merging. ACM Trans. on Graphics (2012).

[GL10] GARANZHA K., LOOP C.: Fast ray sorting and breadth-
first packet traversal for GPU ray tracing. Computer Graphics
Forum (2010).

[GR08] GRIBBLE C. P., RAMANI K.: Coherent ray tracing via
stream filtering. In Proc. of Interactive Ray Tracing (2008).

[Han86] HANRAHAN P.: Using caching and breadth first traversal
to speed up ray tracing. In Proc. of Graphics Interface (1986).

[HKL10] HANIKA J., KELLER A., LENSCH H. P. A.: Two-level
ray tracing with reordering for highly complex scenes. In Proc.
of Graphics Interface (2010).

[HLJH09] HOBEROCK J., LU V., JIA Y., HART J. C.: Stream
compaction for deferred shading. In Proc. of High Performance
Graphics (2009).

[HPJ12] HACHISUKA T., PANTALEONI J., JENSEN H. W.: A
path space extension for robust light transport simulation. ACM
Trans. on Graphics (2012).

[KS02] KATO T., SAITO J.: Kilauea: parallel global illumination
renderer. In Proc. of Eurographics Workshop on Parallel Graph-
ics and Visualization (2002).

[KTO11] KONTKANEN J., TABELLION E., OVERBECK R. S.:
Coherent out-of-core point-based global illumination. In Com-
puter Graphics Forum (2011), vol. 30.

[LMW90] LAMPARTER B., MUELLER H., WINCKLER J.: The
Ray-z-Buffer – an approach for ray tracing arbitrarily large
scenes. Tech. rep., Univ. Freiburg Inst. für Informatik, 1990.

[MBK∗10] MOON B., BYUN Y., KIM T.-J., CLAUDIO P., KIM
H.-S., BAN Y.-J., NAM S. W., YOON S.-E.: Cache-oblivious
ray reordering. ACM Trans. on Graphics (2010).

[MSS∗10] MEYER Q., SÜSSMUTH J., SUSSNER G., STAM-
MINGER M., GREINER G.: On floating-point normal vectors.
In Computer Graphics Forum (2010).

[NFLM07] NAVRÁTIL P. A., FUSSELL D. S., LIN C., MARK
W. R.: Dynamic ray scheduling to improve ray coherence
and bandwidth utilization. In Proc. of Interactive Ray Tracing
(2007).

[NO97] NAKAMARU K., OHNO Y.: Breadth-first ray tracing uti-
lizing uniform spatial subdivision. Trans. on Visualization and
Computer Graphics (1997).

[ORM08] OVERBECK R., RAMAMOORTHI R., MARK W. R.:
Large ray packets for real-time Whitted ray tracing. In Proc.
of Interactive Ray Tracing (2008).

[PFHA10] PANTALEONI J., FASCIONE L., HILL M., AILA T.:
PantaRay: fast ray-traced occlusion caching of massive scenes.
ACM Trans. on Graphics (2010).

[PKGH97] PHARR M., KOLB C., GERSHBEIN R., HANRAHAN
P.: Rendering complex scenes with memory-coherent ray tracing.
In Proc. of SIGGRAPH (1997).

[RCJ99] REINHARD E., CHALMERS A., JANSEN F. W.: Hybrid
scheduling for parallel rendering using coherent ray tasks. In
Proc. Symp. on Parallel Visualization and Graphics (1999).

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-level
ray tracing algorithm. In ACM Trans. on Graphics (2005).

[SHG09] SATISH N., HARRIS M., GARLAND M.: Designing
efficient sorting algorithms for manycore gpus. In IEEE Interna-
tional Symp. on Parallel & Distributed Processing (2009), pp. 1–
10.

[Tsa09] TSAKOK J. A.: Faster incoherent rays: Multi-BVH ray
stream tracing. In Proc. of High Performance Graphics (2009).

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid
of packets: efficient SIMD single-ray traversal using multi-
branching BVHs. In Proc. of Interactive Ray Tracing (2008).

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER
M.: Interactive distributed ray tracing of highly complex mod-
els. In Proc. of Eurographics Workshop on Rendering Techniques
(2001).

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.


