
Copyright is held by the author / owner(s). 
SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010. 
ISBN 978-1-4503-0210-4/10/0007 

Art-directing Disney’s Tangled Procedural Trees

Arthur Shek Dylan Lacewell Andrew Selle Daniel Teece Tom Thompson
Walt Disney Animation Studios

Figure 1: Left to right: visual development art-direction target (courtesy Kevin Nelson), curve representation, procedural foliage to canopy
shell, look dev element render (courtesy Charles Colladay), stylized render from Tangled (sparse leaf variant to support story)

1 Introduction
Creating stylized trees with hundreds of thousands of leaves is typ-
ically a painstaking task that requires hours of artist time. In Walt
Disney’s animated feature film Tangled, we faced the challenge of
populating dense forests with animated trees on which artists could
quickly iterate to meet an art-directed look. We designed a system
of authoring trees based around a language of hierarchical curves.
Our system lets artists interactively sketch out a base skeleton rep-
resentation of a tree and grow procedural twigs and leaves out to a
canopy shell by tweaking a limited number of parameters.

2 Curves and Geometry
We determined that the base representation of trunks, branches and
twigs would be a system of curves with a notion of hierarchy. This
allowed us to write modular pieces of a tree pipeline based around
a common structure. Curves also gave us the additional ability to
quickly setup animation rigs or dynamic simulations where needed.

To create the desired curve and geometric structure of trees, we
designed a number of Maya tools. Certain hero trees called for
hand-modeled 3D geometry. We authored a tool called Skeletor to
extract curves from the model via a mesh skeletonization algorithm
[Au et al. 2008]. This allows us to map complex geometry to a net-
work of curves. We also needed software that would allow artists to
quickly generate curves to build up a tree. TreeSketch is a plug-in
that enables artists to interactively draw a hierarchy of curves (see
Fig. 1, 2nd image). From hand-sketched or procedurally generated
curves, we needed to perform the inverse operation of Skeletor, to
automatically build geometry from a base curve skeleton. Disney’s
pipeline necessitated a quad mesh input and we also desired closed,
manifold and smooth meshes. Our Treeman tool was implemented
to meet these specifications, while meeting the challenging require-
ment of robustly handling many close and competing junctions.

3 Procedural Growth
A standard technique to create procedural branching uses L-
systems. We found L-systems require a language and grammar that
is unintuitive for artists to describe a desired look. The alternative
of hardcoding certain rules and giving artists sliders to dial in mul-
tipliers and random seeds also limits the achievable range of looks.

To get around these limitations, we wrote an interactive particle
marching engine called Dendro. The engine instances particles on
the base tree curves according to user exposed parameters. At each
timestep, particles can either branch or march out a certain distance
in a particular direction, influenced by user parameters. The history
of the timestepped particles describe points on a curved path that
result in a procedural branching twig structure. Because each point
on a twig has an associated lifetime, we can use that information to
derive twig width and to instance leaves at desired points.

Dendro’s particle method resulted in a number of additional bene-

fits. Artists could further art-direct growth on trees by using canopy
shells. These polygonal shells were transformed into voxel regions
and used to kill marching particles within a threshold distance, let-
ting artists clip tree growth loosely or tightly to a desired shape. The
particle technique also allowed us to include natural tropism effects,
such as dealing with environmental factors like gravity, growing to-
wards light, or around obstacles. Artists may dial in wind direction,
frequency and amplitude to add procedural animation. Rounding
out the core featureset of Dendro is the ability for users to control
leaf orientation. All parameters are generic enough that they can be
used to generate variant trees of the same species simply by chang-
ing the random seed. Dendro features are exposed to artists at the
asset creation level via an interactive frontend within Maya.

4 Rendering
Twigs and leaves were rendered with a Renderman procedural that
called the Dendro engine. For direct lighting, we used two-sided
shaders and deep shadow maps. For indirect lighting and occlusion,
we baked static precomputed radiance transfer (PRT) textures with
a custom raytracer. The art direction and the forgiving nature of
foliage let us optimize the baking aggressively; we used order 3
PRT, simplified leaves to single quads, computed one sample per
leaf, and reused the static data even during animation. We used
stochastic pruning on the leaves and twigs to cull out appropriate
level of detail for rendering large groves of trees. On top of that, we
achieved significant acceleration of renders by using a brickmap
representation to optimize heavily populated scenes.

Together, this suite of tools has dramatically increased our studio’s
ability to generate and iterate on largely procedural, yet highly art-
directable trees and foliage.

Figure 2: Left: Tree element from Tangled, 1.02 million leaves
(courtesy Larry Wu), Right: Leaf detail

References
AU, O. K.-C., TAI, C.-L., CHU, H.-K., COHEN-OR, D., AND LEE, T.-

Y. 2008. Skeleton extraction by mesh contraction. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 papers, ACM, New York, NY, USA, 1–10.


