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Figure 1: Our algorithm allows us to precompute detailed boundary layer data and efficiently reuse it for new simulations. We are able to
generates turbulent vortices taking into account the relative velocity of an obstacle in the flow. Here, we apply our algorithm to a very thin
object that is barely represented on the simulation grid.

Abstract

Turbulent vortices in fluid flows are crucial for a visually interest-
ing appearance. Although there has been a significant amount of
work on turbulence in graphics recently, these algorithms rely on
the underlying simulation to resolve the flow around objects. We
build upon work from classical fluid mechanics to design an algo-
rithm that allows us to accurately precompute the turbulence being
generated around an object immersed in a flow. This is made pos-
sible by modeling turbulence formation based on an averaged flow
field, and relying on universal laws describing the flow near a wall.
We precompute the confined vorticity in the boundary layer around
an object, and simulate the boundary layer separation during a fluid
simulation. Then, a turbulence model is used to identify areas where
this separated layer will transition into actual turbulence. We sam-
ple these regions with vortex particles, and simulate the further dy-
namics of the vortices based on these particles. We will show how
our method complements previous work on synthetic turbulence,
and yields physically plausible results. In addition, we demonstrate
that our method can efficiently compute turbulent flows around a
variety of objects including cars, whisks, as well as boulders in a
river flow. We can even apply our model to precomputed static flow
fields, yielding turbulent dynamics without a costly simulation.

Keywords: Turbulence, Physically Based Animation, Fluid Simu-
lation

1 Introduction

Many interesting natural phenomena are the result of fluids inter-
acting with objects immersed in a flow. Examples include smoke
behind a car being influenced by the vortices in the car’s wake as
well as complex wave structures and splashes forming around rocks
in river beds. Fluid simulations have made huge steps in previous
years, and have become an important tool for filmmakers. Despite
the increased popularity, fluid simulations are still inherently dif-
ficult to use. For a typical solver, the accuracy of the spatial dis-
cretizations and the viscosity of the fluid to be simulated are related.
This means that a fluid such as air or water requires a high grid res-
olution to yield a turbulent and interesting look. This unfortunately
results in long computation times and high memory requirements,
limiting controllability and the scope of applications.

Although several approaches to alleviate these fundamental
problems were suggested, most of them deal with the preserva-
tion of vortices already represented in the overall flow. In contrast
to this, our work targets the interaction of objects with the fluid,
namely turbulence created by flows around obstacles. While previ-
ously used methods either require a manual seeding of turbulence
[Selle et al. 2005] or rely on the simulation to resolve the interaction
with the object accurately enough [Kim et al. 2008b; Narain et al.
2008], we precompute the turbulence generated around an object
using techniques from the wall flow theory of traditional computa-
tional fluid dynamics (CFD). Such theory models the behavior of
near-wall regions of flow around objects, which is important since
these boundary layers strongly influence forces on the object as well
as shed turbulent structures. These techniques have been important
for many applications such as the optimization of wing profiles.

Our precomputation step captures the characteristics of the
boundary layer around the object, and stores it for different sets of
flow directions. Our model allows us to purely resolve the geometry
of the object with the precomputation, instead of having to fully re-
solve the actual flow velocity in the often very thin boundary layer.
For the precomputation, we assume that an object can be character-
ized by a relative translational and rotational velocity, allowing for
simulations of rigid body motion or static flows of arbitrary direc-
tion.
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Figure 2: An overview of different steps of our algorithm. After precomputing the artificial boundary layer (1), we run a new simulation (2)
and apply the confined vorticity from the precomputation (3). Regions transitioning into turbulence are identified with an approximation of
the Reynolds stress (4). This results in the creation of vortex particles. Their dynamics are computed in an additional step (5).

In a second step, we re-use our precomputed boundary layer
data to efficiently calculate where vortices are created around the
object in a separate simulation. We compute the evolution of vor-
ticity around the object, and estimate regions where this vorticity
becomes unstable to form actual turbulent vortices. In contrast to
traditional CFD applications, we are not targeting averaged proper-
ties, such as the mean pressure distribution around an object. Our
goal is to compute a visually interesting temporal evolution of the
turbulence around the object. We achieve this by modeling the vor-
tices with an improved variant of vortex particles [Selle et al. 2005].
We create vortex particles based on boundary layer vorticity and
simulate their dynamics (as well as splitting and merging) based on
turbulent energy transport and the vorticity equations of flow. The
resulting vorticity can even be reconstructed into a grid with higher
resolution than the base simulation.

Overall, our approach allows us to efficiently compute complex
turbulent flows around objects without having to manually seed par-
ticles or having to simulate on very high grid resolutions. Moving
the computations for the generation of turbulence into a preprocess-
ing step allows us to quickly set up new simulations around a given
object. The contributions of our method are:

• A new method to accurately track and precompute boundary
layer vorticity using an artificial boundary layer whose accu-
racy is independent of a final simulation resolution.

• An algorithm to process the precomputed data in a dynamic
simulation to spawn vortices according to the current flow.

• A vortex particle method that models vortex interactions and
adheres to turbulent energy transport theory.

Our method also elegantly handles turbulent free surface flows, a
topic that has been barely studied in previous work other than the
work of Selle et al. [2005] and Narain et al. [2008]. In addition, our
method can accurately compute turbulent wakes around objects that
are too fine to be resolved on the simulation grid. This is due to the
fact that we decouple the resolution, and thus accuracy, of computa-
tions for the turbulence around obstacles, the actual simulation and
the evaluation of the vortex particles. Because our method separates
resolving the boundary layer and the actual flow, it can be seen as
an example of the increasingly important paradigm of multi-scale
physics.

Overview Our simulation method consists of a standard, grid-
based fluid solver, e.g. according to Stam [1999], augmented with
a turbulence representation. We use an enhanced version of vor-
tex particles [Selle et al. 2005], which enforce a rotation in the
flow around the particle’s position, to represent turbulence. The key
point of our paper is an intelligent method to seed these particles.
In § 3, we will develop a theory for this. In § 4, the dynamics of the

vortex particles are described, and the coupling of the vortex parti-
cles to the flow field is explained. The actual simulation loop and
implementation details are discussed in § 5.

2 Related Work

Stam [1999] popularized the unconditionally stable combination of
semi-Lagrangian advection with first order pressure projection, but
numerical dissipation still plagued simulations. A common way to
combat dissipation is to attempt to more closely converge to the
solution. Adaptive grid methods [Losasso et al. 2004], [Feldman
et al. 2005], [Irving et al. 2006] address numerical dissipation with
refinement. However, this assumes only a small part of a simula-
tion needs high detail. One can also apply higher order advection
methods such as Back and Forth Error Compensation and Correc-
tion [Kim et al. 2005], semi-Lagrangian MacCormack [Selle et al.
2008], QUICK [Molemaker et al. 2008], or CIP methods (see e.g.
[Kim et al. 2008a]). Alternatively, Fedkiw et al. [2001] advocate
detecting and amplifying existing vortices to combat dissipation.
Mullen et al. [2009], on the other hand, propose an implicit energy
preserving velocity integration scheme to solve the vorticity equa-
tion. Although precomputations are difficult for fluid simulations,
Wicke et al. [Wicke et al. 2009] presented a method to precompute
and couple reduced bases of flows. These algorithms, however, still
rely on the underlying simulation to resolve the boundary layers
around objects.

Many researchers have augmented or replaced basic fluid simu-
lation with synthetic turbulence. Stam [1993] introduced a method
that used a Kolmogorov spectrum to produce procedural divergence
free turbulence. This approach was used to model nuclear explo-
sions and flames [Rasmussen et al. 2003; Lamorlette and Foster
2002]. Bridson et al. [2007] suggest taking the curl of vector noise
fields to produce divergence free velocity fields. They explicitly ad-
dress computing flows around objects efficiently by modulating the
potential field, however, their method does not model the complex
turbulent effects near the wall. Most recently, researchers have con-
sidered transporting quantities with a lower resolution simulation
which is used to generate detail [Kim et al. 2008b; Schechter and
Bridson 2008; Narain et al. 2008]. However, the treatment of ob-
stacles is not the focus of these techniques. Kim et al. [2008b] only
extrapolate energies into obstacles to prevent artifacts and Narain et
al. [2008] state that their approximation is not valid in the vicinity
of obstacles.

While the preceding approaches achieve interesting turbulent be-
havior in fluid volumes, a major source of turbulence is interac-
tion of fluids with solids. Two-way coupling of fluids has been ad-
dressed by Carlson et al. [2004], Guendelmann et al. [2003] and
Klingner [2006]. More recently researchers have modeled subgrid
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interactions with objects more accurately through the use of aper-
tures [Batty et al. 2007; Robinson-Mosher et al. 2008]. Neverthe-
less, very little previous work in graphics addresses the problem that
the thin turbulent boundary layer is not resolved in the simulation,
resulting in turbulence not being shed.

3 Wall-Induced Turbulence
While turbulence in flows is generated by various processes, the
most common and visually important one is turbulence generation
at the flow boundaries. Therefore, our algorithms explicitly model
this important process. Our method is based on wall flow theory
and turbulence modeling, which we will outline in § 3.1. A more
thorough review can be found in the book by Pope [2000].

3.1 Generation of turbulence

In wall-bounded flows, wall friction enforces a tangential flow ve-
locity of zero at the wall. This leads to the formation of a thin layer
with reduced flow speed, called the boundary layer. Fig. 3 shows a
velocity profile in the boundary layer. It has been shown that this
profile is equivalent for all wall-bound flows when using normal-
ized units. This universal law of the wall was stated by van Driest
in [1956].

The gradient of tangential flow velocity in the boundary layer
leads to the creation of a thin sheet of vorticity ωωω = ∇× u. For
planar walls, this vorticity remains mostly confined to the boundary
layer, and we will thus refer to it as confined vorticity. At regions
of high flow instability however, vorticity may be ejected from the
boundary layer and enter the flow as turbulence. This happens e.g.
at sharp edges, where the boundary layer is separated from the wall,
and likely to become unstable, or when other turbulent structures
disturb the boundary layer. This process of turbulence formation is
referred to as roll-up, and is the predominant mechanism of wall-
induced turbulence generation [Jiménez and Orland 1993]. There
is no theory quantitatively describing the boundary layer roll-up
process. We will therefore model this process in a statistical sense,
as explained below.

Turbulence modeling We base our approach on CFD tur-
bulence modeling techniques. These techniques model statistical
properties of turbulence based on the ensemble-average of the flow
field u. For a quasi-static flow, ergodicy permits us to use the time-
averaged flow field, i.e. the flow field with all fluctuating turbulent
structures averaged out, instead of the more complicated ensemble
averaging.

One of the most important quantities that can be modeled in such
a way is the Reynolds stress tensor. It governs the transfer of en-
ergy from the bulk flow to turbulent structures, and thus the gen-
eration of turbulence. This fact is commonly used for Reynolds-
averaged Navier-Stokes simulations (RANS) or Large-Eddy Simu-
lations (LES), and we will make use of it for our method as well.
Next, we will describe how we model the boundary layer.

Boundary layer modeling In order to accurately model wall-
induced turbulence formation, we need to track the confined vortic-
ity, simulate the boundary layer separation and finally identify the
transition points to turbulence.

As the boundary layer, attached to an obstacle is very thin
(smaller than simulation grid resolution in most cases), it is difficult
to directly measure confined vorticity. Instead, we leverage the uni-
versal law of the wall, and note that the confined vorticity only de-
pends on the velocity scale and materials constants. For each point
in the wall-attached boundary layer we therefore determine the con-
fined vorticity as

ωωωABL = β (Us×n) . (1)

The velocity scale Us is the tangential component of the averaged
flow velocity just outside the boundary layer. The constant β ac-
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Figure 3: The mean velocity profile near a wall (in normalized
units) has the form shown above. This has been confirmed in nu-
merous experiments, and was formulated as a universal law by van
Driest.

counts for the two material constants, skin friction coefficient and
the fluid viscosity. In our model, β is a user-defined parameter. We
call the resulting field ωωωABL the artificial boundary layer.

On the other hand, boundary layer separation is an advective
transport process. If the wall-attached part of the artificial bound-
ary layer is known, then the separation plume can be derived by
advecting this field with the flow field during the simulation run.

The last missing part is to identify regions where the separated
boundary layer becomes unstable, and the confined vorticity ωωωABL
transitions to free turbulence. The anisotropic part of the Reynolds
tensor ai j, which is responsible for the production of turbulence, is
a good indicator for such transition regions. We therefore define a
transition probability density pT , which is used to seed turbulence,

pT = cP ∆t
‖ai j‖
|U0|2

(2)

such that regions with high Reynolds stresses are likely transition
regions. Here, ‖ · ‖ denotes the Euclidean matrix norm. Reynolds
stresses are normalized to a uniform scale by the inflow velocity
U0, and cP is a parameter to control the seeding granularity. If using
varying time-steps, pT has to be multiplied by ∆t to ensure consis-
tent behavior. In the following, we will describe how to compute
the Reynolds stress tensor based on stresses in the averaged flow
field.

Reynolds models The anisotropic component ai j of the
Reynolds stress tensor Ri j can be expressed using the turbulent vis-
cosity hypothesis

ai j =−2νT Si j , (3)

where νT is the turbulent viscosity and Si j denotes the strain tensor

Si j =
1
2

(
∂Ui

∂x j
+

∂U j

∂xi

)
. (4)

The turbulent viscosity can be expressed in terms of a so called
mixing length lm, which in near-wall regions is given by the distance
to the wall. We chose the model of Baldwin [1978] for modeling the
turbulent viscosity:

νT ≈ lm2‖Ωi j‖ . (5)

Here, Ωi j is the rotation tensor that can be computed as

Ωi j =
1
2

(
∂Ui

∂x j
−

∂U j

∂xi

)
. (6)

Using these standard methods, it is possible to model the gener-
ation of turbulence using only the non-turbulent mean flow veloci-
ties.

Synthetic Turbulence using Artificial Boundary Layers       •       121:3

ACM Transactions on Graphics, Vol. 28, No. 5, Article 121, Publication date: December 2009.



log(wave number)

lo
g(

en
er

gy
)

model
range

inertial
range

dissipative
range

energy is 
introduced

energy cascade

energy  is
removed

κ0

Figure 4: This graph shows the typical evolution of the energy per
vortex wavenumber. Energy is introduced into the system at large
scales in the model range. The energy is subsequently transferred
into smaller scales by scattering of vortices, and finally dissipates
due to viscosity in the dissipative range.

However, the presented Reynolds stress model requires a high
grid resolution around the boundaries to capture the thin boundary
layer accurately. In a typical fluid simulation in graphics, the bound-
ary layer thickness is often smaller than a grid cell. Consequently,
the discrete S and Ω operators will fail to capture the desired effect,
or even cause instabilities due to highly discontinuous gradients, as
also mentioned by, e.g. Narain [2008].

We therefore propose two changes to this model. First, we know
that in regimes close to a wall, the norm of the rotation tensor equals
the norm of the confined boundary layer vorticity, ‖Ωi j‖= |ωωωABL|.
Also, we assume that ‖Si j‖ ≈ ‖Ωi j‖. This is a good approximation
if the velocity gradient is dominated by the component normal to
the wall [Pope 2000], which, except for sharp corners, is usually
the case in the near-wall region. With these assumptions, we can
rewrite the Reynolds stress without the problematic discrete stress
and rotation tensors as

‖ai j‖ ≈ 2lm2|ωωωABL|2. (7)

Combined with Eq. (2) this leads to the final equation for the tran-
sition probability.

pT = 2cP ∆t lm2 |ωωωABL|2

|U0|2
. (8)

The seeding process for vortex particles, based on pT , is explained
in § 4.3.

3.2 Precomputing the Artificial Boundary Layer

The artificial boundary layer together with Eq. (8) can be used to
seed turbulence, in the form of vortex particles, in the appropriate
places of the flow. However, the expression for the wall-attached
ωωωABL depends on the averaged flow field U, which is not accessi-
ble during the simulation. It is not possible to use the instantaneous
flow field of the simulation, as the emerging turbulence would lead
to feedback loops. However, we can precompute ωωωABL for quasi-
static scenes or scenes with rigidly moving objects. This has the
additional advantage that we can choose simulation resolution and
precomputation resolution independently, allowing us to precom-
pute fine boundary geometries, while running the simulation on a
coarse grid.

Precomputation is done by running a standard fluid solver, and
time-averaging the flow field. At all obstacle boundary voxels,
Eq. (1) is evaluated, and ωωωABL is stored in a suitable data structure
(see pseudo-code Fig. 5). More details on the implementation of the
precomputation step, and how the precomputed data is used in the
simulation will be given in § 5. In the next section, we will explain
how to compute the dynamics of our turbulence representation.

1: Perform standard grid-based simulation
2: Obtain time-averaged flow field U
3: for each voxel x on the obstacle boundary do
4: // Get voxel outside the boundary layer
5: xe← x+ l n
6: ωωωPRE ← β (U(xe)×n)
7: Store (x,ωωωPRE) in a point set
8: end for

Figure 5: Pseudo-code for precomputing the Artificial Boundary
Layer. n denotes the surface normal and l is the boundary layer
thickness. l is chosen to be the distance from the wall at which the
velocity gradient approaches zero, usually 1-2 grid cells.

4 Turbulence Synthesis
We chose to represent turbulence using vortex particles. Particles
have the advantage that advection is trivial in the Lagrangian set-
ting, while Eulerian approaches have to combat artifacts due to
strong deformations from the advection [Kim et al. 2008b]. In ad-
dition, particles allow us to focus on sampling the regions where
turbulence is actually generated. Narain et al. [2008] use particles
with curl noise textures as a turbulence representation. However,
this only works in the inertial subrange. Since we also want to sim-
ulate the model-dependent range, where no uniform direction and
energy distribution can be assumed, we use an enhanced variant of
the method by Selle [2005]. In contrast to the original paper, we
also model energy transfer and make use of an improved synthesis
step.

4.1 Energy spectrum

The statistical properties of turbulent kinetic energy can be de-
scribed by energy distribution spectra. Fig. 4 shows a typical log-
arithmic spectrum of energy over the wavenumber of the turbulent
structures. Three sections can be identified:

• Model-dependent range. In this region, large-scale structures
are dominant and most of the spectrum’s energy is contained.
The production of turbulence mainly occurs in the model-
dependent range, and its behavior is strongly dependent on
the flow, and is therefore not easily described by statistics.

• Inertial subrange. The inertial subrange is a range of fully-
developed homogeneous turbulence, with a behavior that is
essentially equivalent for all flows. Kolmogorov [1941] found
that in fact the slope of the energy spectrum is always −5/3.
Turbulent energy in the inertial subrange flows from small to
higher wavenumbers, creating an energy cascade.

• Dissipative range. The main energy dissipation occurs in the
range of large wavenumbers.

Most existing turbulence methods in graphics are only able to
model the turbulent behavior in the inertial subrange, e.g. by curl
noise (see [Bridson et al. 2007; Kim et al. 2008b; Narain et al.
2008]), where a uniform distribution of rotation angles and energy
can be expected. Therefore the grid resolution has to be high enough
to cover all structures up to κ0 in Fig. 4. We propose a method that
also handles behavior in the model-dependent range, thus produc-
ing higher detail while requiring less simulation resolution.

4.2 Vortex particle dynamics

Turbulence dynamics can be seen from two points of view: The vor-
ticity differential equation describes the direct evolution of the vor-
ticity field, while the energy transport equation describes its statis-
tical behavior. Both consist of terms for advection, generation, dis-
sipation and scale transfer, but have different advantages for a La-
grangian representation. While the vorticity equation is well suited
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for describing dynamics, the injection and dissipation of energy via
particle creation and dissipation is easier in an energy formulation.
We will use a combination of both representations to leverage the
strengths of both models.

Motion equation The dynamics of vorticity represented are de-
scribed by the vorticity formulation of the Navier-Stokes equation

∂ωωω

∂ t
+(u ·∇)ωωω = (ωωω ·∇)u+ µ∇

2
ωωω +∇× f , (9)

where f denotes the external forces, and µ is the viscosity coef-
ficient. The left side of the equation is inherently handled by ad-
vecting the particles in the flow field of the Navier-Stokes solver.
The first term on the right-hand side is the vortex stretching term. It
is computed by trilinear interpolation of the discrete gradient of the
velocity grid, and is used to adjust the particles’ vorticity magnitude
by ∆t(ωωω ·∇)u. This term is problematic as it might introduce expo-
nential accumulation of vorticity magnitude in a particle. Therefore,
the particle is rescaled after the update to preserve the magnitude,
effectively only spinning the particle, but not altering its strength.
The energy gain and loss is handled explicitly by energy dynam-
ics, explained below. Similarly, the viscous diffusion term (the sec-
ond term on the right hand side of Eq. (9)), will be handled by en-
ergy dynamics, as it is not well represented by a vorticity exchange
among sparsely sampled particles.

The last term of Eq. (9) is handled with an underlying simu-
lation, as external forces such as gravity are well-represented by a
Navier-Stokes solver, and act on the vortex particles via the velocity
grid. This gives us a reduced formulation of Eq. (9) that conserves
vorticity as well as energy. It is therefore orthogonal to the energy
transfer, the computation of which we will describe next.

Energy dynamics The dynamics of the turbulent kinetic energy
E are covered by the energy transport equation [Pope 2000]

∂E
∂ t

+(u ·∇)E =−∇ ·T+P− ε (10)

The left hand side again is handled by advection of the particles.
The right-hand side consists of production P , dissipation ε and the
energy transfer term ∇ ·T. These quantities are in general complex
to model, especially in the model-dependent range. For the produc-
tion term, we can use the information from our artificial bound-
ary layer (see § 3.2). The dissipation ε occurs at wavenumbers that
are usually well below the resolved grid resolutions. Dissipation is
therefore implemented by removing particles whose radii are too
small to be represented on the grid. We use a threshold of 2∆x for
our simulations. Finally, for handling the remaining energy transfer
term for T of Eq. (10), we distinguish the following two cases:

1. The particle is in the inertial subrange. We represent the en-
ergy cascade by decaying a particle with wavenumber κa into
n particles of smaller wavenumber κb. We typically use n=2
in our simulations. From Kolmogorov’s law, we can derive

a timescale of decay as ∆t = C(κ
− 2

3
a − κ

− 2
3

b ), where C de-
notes a parameter that depends on the rate of dissipation ε .
In practice we can use a value normalized by the averaged
flow U here. We also know that for the turbulent energies
Ea/Eb = n(κa/κb)−

5
3 holds, which is used to derive the vor-

ticity magnitude of the new particles. For practical reasons,
we also add a small position and angle displacement to the
new vortex particles, as they would otherwise lump together.

2. The particle is in the model-dependent range. As transfer can-
not be easily described in this regime, a simple heuristic is
used. Typically, small vortices with aligned direction tend to

form larger vortices in this range. Therefore, we merge vortex
particles in the model-dependent range with a distance of less
than the particle radius to a single larger vortex particle. Here,
the vortex magnitude is chosen so that total the energy is con-
served as Enew = E1 + E2. As very small and strong vortex
particles might induce stability problems, we also conserve
the energy density, i.e. Enew

Vnew
= E1

V1
+ E2

V2
. This specifies the ra-

dius and strength of the merged particle. The new direction is
obtained by a weighted average, with the respective energies
as a weight.

4.3 Vorticity Synthesis

Turbulence synthesis is performed by enforcing the vortex parti-
cles’ vorticity on the simulation velocity grid. Each vortex particle
has a vorticity vector ωωωP, encoding magnitude and rotation axis,
and a kernel over which this value is applied.

Kernel For the direct regulation of vorticity, a kernel with the
following properties is desired: at the vortex particle center, vortic-
ity should be equal to ωωωP. Also, the resulting vector field should
mainly contain rotation around ωωωP, and smoothly fade out with the
particle radius without causing discontinuities. And lastly, the asso-
ciated velocity field, and its integral, which is needed for e.g. energy
calculation, should be a simple analytic form. We chose a Gaussian
peak with standard deviation of σ in the vector potential to meet
these requirements. In cylindrical coordinates, it is given by

Ψ(z,ϕ,ρ) =−|ωωωP|σ2 exp
−ρ2−z2

2σ2 ez , (11)

where the vortex axis ez is aligned with ωωωP. We can then derive the
velocity field

u = ∇×Ψ =−|ωωωP|ρ exp
−ρ2−z2

2σ2 eϕ , (12)

and the vorticity kernel

ωωω = ∇×u =−|ω
ωωP|
σ2

(
ρzeϕ − (ρ2−2σ

2)ez

)
exp

−ρ2−z2

2σ2 . (13)

A cut-off radius is used to make the kernel support finite. We use
r =
√

6σ at which point the exponential term of the kernel function
has fallen to 10−3. The length scale is defined at the kernels’ origin,
so that its wavenumber is κ = 1

σ
. For the contained energy E ∝

ωωωP
2 σ5 holds.

Kernel Evaluation This is a three-step process: First, the vor-
ticity field ωωω = ∇× u of the velocity grid is computed by finite
differences. Second, all particle vorticity kernels are summed up to
obtain a desired vorticity field ωωωD. And third, each particle adds its
kernel to the velocity field, scaled by a weight wk, computed as:

wk = ∑kernel(ωωωD−ωωω) · ω̄ωωP

∑kernel ωωωD · ω̄ωωP
, (14)

where ω̄ωωP is the particles’ normalized rotation axis. The dot product
with ω̄ωωP ensures that only the vortex particles’ direction is consid-
ered, and the kernel is normalized by the sum of desired vorticity.
We achieve an exact regulation of the vorticity sum under the kernel
in one timestep by this process.

Vortex particle seeding As explained in 3.2, particles will be
seeded in regions of high normalized Reynolds stress. Based on the
probability pT (x) from Eq. (8), a particle is created at position x.
All confined vorticity ωωωABL within the particle’s radius is removed
from the artificial boundary layer, and the particle’s strength and
direction ωωωP are set such that the vorticity integrated over the kernel
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Figure 6: Example of a moving object inducing turbulence in its wake. The top row of images shows a simulation without vortex particles,
the bottom row was simulated using our method.

equals the removed vorticity sum. We choose the particle radius to
be as large as possible without touching an object. We allow for
radii up to a size rmax which is fully resolved by the main simulation
(we have used a value of rmax = 6∆x below).

The constant cP in Eq. (8) controls the granularity of the seed-
ing process. If set to a high value, confined vorticity is turned into
free turbulence relatively quickly. This results in a large number of
weaker particles near the object, which then merge to large vortices.
On the other hand, if cP is set to a high value, the artificial bound-
ary layer plume can grow, and fewer, stronger particles form. With
an appropriately chosen cP, numerical cost can be kept low while
avoiding popping artifacts that may occur if overly large particles
are seeded. We use a cp of ≈ 1−4 in our simulations.

5 Implementation

5.1 Precomputation

For precomputing the artificial boundary layer, it is essential to re-
solve the mean flow around an object. This can be done using time-
averaging over a long period of time with a standard solver, or using
a RANS solver. As we are only interested in the velocities around
the boundary layer, we have used a standard solver with an arti-
ficially increased viscosity in the form of a diffusion step for the
velocities. Due to the increased viscous effect, it stabilizes quickly
and an average over fewer frames can be used. We have found that
using the more complex RANS or longtime-averaging does not pay
off visually compared to this more efficient solution. After obtain-
ing the averaged flow field, the boundary layer is calculated accord-
ing to the pseudo-code (Fig. 5) and stored as a point set.

Moving objects To precompute the flow for scenes with moving
objects, the boundary layer around each moving objects is precal-
culated. If the object can move and rotate freely, or its movement
is not known a priori, our algorithm allows us to precompute the
whole range of movement directions to later on generate arbitrary
simulations of the object in a flow. For this, we split the movement
into a translational and a rotational component and precompute ar-
tificial boundary layers for each.

To perform the precomputation, the object is placed in the center
of a simulation grid. The domain box is chosen large enough not
to disturb the flow around the object. For the translational compo-
nent, we leave the object fixed and use different inflow velocities,
defined as boundary conditions on the domain box. As ωωωABL is lin-
ear in the velocity magnitude, we only need to sample the velocity
direction. In our simulations, we use 10× 20 samples in spherical
coordinates. For the rotational component, the object is placed in
a standing fluid, and we rotate the object with normalized speed
around a chosen axis. Again, we use 10× 20 samples in spherical
coordinates to sample the rotation axis direction.

Figure 7: The top picture show a basic simulation of a fluid flowing
left to right over a cavity. This flow produces a big vortex in the
cavity, but is unable to capture any generation of turbulence from
the walls. With our method (at the bottom) we are able to identify
the confined vorticity shedding off the two edges of the cavity, and
introduce corresponding vortex particles to represent the turbulent
structures forming in the flow.

The simulations stabilize quickly due to the increased viscosity.
We have used 50 steps for the examples shown in our video. In the
precomputations for the rotational component, this is equivalent to
one full rotation. After stabilizing, we average the velocities over
another 50 frames. We note that precomputations for each direction
can be trivially done in parallel.

Applying the precomputed set At simulation time, we deter-
mine the objects linear velocity relative to the scene, and its rota-
tion axis. We then look up the nearest values in the precomputed
database. A bilinear spherical interpolation is performed for both
the linear velocity direction as well as the rotation axis. The results
of the interpolation are scaled by respective magnitude and added.
We have performed error measurements for the linear interpolation
of the boundary layer values. The corresponding graph can be seen
in Fig. 12. Our choice of 20 directional samples in the azimuth
means we have an interpolation error of 1.6%. As the decomposi-
tion into rotational and linear component is only an approximation,
we have also measured its error for the car model (Fig. 6). In this
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Figure 8: Comparison between a reference simulation (top picture),
a simulation with randomly seeded vortex particles along the walls
(middle), and our method (bottom). The random vortex particles de-
stroy the overall flow structure, although the number and strength
of the vortex particles are similar to those used in our method. Our
approach correctly identifies the turbulence being shed off the step,
similar to the reference simulation at the top, and introduces parti-
cles with a correct orientation locally into the flow.

case the error is 8% on average, and thus small enough not to cause
visual artifacts.

It is not necessary to fully resolve the boundary layer during the
precomputations, as our model described in § 3.1 takes care of this.
Instead, one should make sure the resolution of the precomputation
is sufficiently fine to resolve all important geometric features of
the object. This is eased by the precomputation focusing only on
that object, even if it will only occupy a tiny fraction of the final
simulation domain. In addition, since the precomputation can be
used on many simulations, a high resolution precomputation grid
can quickly pay off. In § 6 we demonstrate the effectiveness of the
precomputation even when an object is extremely thin.

5.2 Simulation loop

For the actual simulation, a standard fluid solver and a vortex parti-
cle system are coupled. In each simulation step, the artificial bound-
ary layer is updated, new vortex particles are created and vortex
particle dynamics are applied. Afterwards, the turbulence forces are
added to the flow field, and finally, the remaining steps of the stan-
dard fluid simulation are performed. This is repeated each time-
step. Pseudo-code for this extended simulation loop can be found
in Fig. 9

Note that we can also independently choose a higher grid resolu-
tion for the evaluation of the vortex particles. This allows us to more
accurately evaluate the particle kernels, which is especially useful
for small scale vortex details. This high resolution velocity field is
down-sampled for the main simulation steps (line 28 in the pseudo-
code), and up-sampled for our algorithm before starting with line 1.
Performing the algorithm (line 1–25) with a higher resolution en-
ables us to simulate detailed features, e.g., when advecting smoke
densities or a free surface level set, while the costly pressure pro-
jection operates on a small grid resolution. Typically, we have used
a two times higher resolution for the examples below.

1: // Initialize boundary layer
2: for each voxel x on an obstacle boundary do
3: Find corresponding (xpre,ωωω pre) in precomputed set
4: // Initialize wall-attached ABL
5: ωωωABL(x)←max(ωωωABL(x),ωωω pre)
6: end for
7:
8: // Simulate boundary layer seperation
9: Advect ωωωABL with the main flow

10:
11: // Seed vortex particles
12: for each voxel x with ωωωABL(x) 6= 0 do
13: pT ← 2cP ∆t (lm |ωωωABL(x)|/|U0|)2

14: if random() < pT then
15: (Y )← voxels within particle radius of x
16: ωωωS = ∑(Y ) ωωωABL // sum within particle radius
17: ωωωABL(Y )← 0 // remove vorticity from ABL
18: Seed particle at x with total vorticity ωωωS
19: end if
20: end for
21:
22: // Vortex particle dynamics
23: Advect vortex particles
24: Merge, split, dissipate vortex particles (§ 4.2)
25: Synthesize turbulence (§ 4.3)
26:
27: // Standard fluid simulation steps
28: Velocity self-advection, pressure projection etc.

Figure 9: Pseudo-code for a main simulation loop including our
turbulence model.

6 Results and Discussion
In the following section we discuss comparisons of our method to
previous work and a reference simulation. In addition, we demon-
strate several complex examples of turbulence being generated
around moving objects or due to effects such as wind or a flowing
river.

Comparisons In Fig. 7 the effect of our wall-induced turbulence
can be seen for the flow over a cavity with a grid resolution of
120×60×40. The top image shows a standard, unmodified simu-
lation, while the lower image uses our algorithm to introduce wall-
induced turbulence. Both simulations use the same grid resolution,
but the unmodified simulation is unable to capture any turbulence
being generated from the shearing near the walls. Our simulation
exhibits complex vortices due to the vorticity generated at the wall
boundaries. To compare our method to approaches for synthetic de-
tail generation, we have simulated the same cavity setup includ-
ing wavelet turbulence, using the implementation available on the
paper’s website [Kim et al. 2008b]. Wavelet turbulence success-
fully adds small detail to the overall flow, but has difficulties intro-
ducing larger vortices to the strong horizontal motion. In contrast,
our method introduces persistent larger vortices, while the resulting
smoke filaments are successfully broken up by the wavelet turbu-
lence. This shows that our method is suitable for bridging the gap
between small synthetic vortices and the vortices resolved by a stan-
dard simulation.

We use the setup shown in Fig. 8 to compare our method with
normal vortex particles [Selle et al. 2005]. The simulations now
focus on the left edge of the cavity. The top image shows a refer-
ence simulation, using a four times increased grid resolution. Note
that the flow along the wall to the left is completely straight, while
turbulent structures form to the right of the backward facing step.
This behavior has been confirmed in various experiments and sim-
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Figure 10: Our algorithm naturally extends to simulations of liq-
uids. Here, we apply our algorithm to a river flow around three ob-
stacles, resulting in turbulent wakes behind them.

ulations (e.g. [Le et al. 1997]). The middle image shows the flow
after randomly introducing vortex particles along the walls. Natu-
rally, the vortex particles do not take the overall flow into account,
and strongly distort the structure of the flow. Our method, shown
in the bottom picture, is able to recover the vortices being shed off
the step, without distorting the flow along the wall to the left. Al-
though we are not able to fully recover the flow of the reference
simulation due to the different numerical viscosities, our method is
able to qualitatively capture the wall-induced turbulence at a much
lower computational cost. On average, the time per frame for the
reference simulation was 218 times higher than for the simulation
with our algorithm.

The limitation that motivated vortex particles was that vorticity

confinement uniformly amplified vorticity magnitude. Our method,
like vortex particles, overcomes this by allowing local modeling
of vorticity, including effects like tilting and stretching. However,
by modeling the boundary layer and considering the directions of
particles vortices with Eq. (1), we are able to keep vortex particles
from disturbing the bulk flow. This allows us to use vortex particles
of larger magnitude than the randomly seeded vortex particles.

Complex Examples Next we consider examples with more com-
plex geometry. Fig. 6 shows the simulation of a moving car that is
emitting smoke. It can be observed how our model reproduces the
dependence of turbulence strength from the cars velocity. As can
be seen in the top row of Fig. 6, a normal simulation of the same
resolution would not resolve any shed vortices at the car’s surface.
Second, Fig. 1 shows a thin whisk geometry stirring smoke. The
boundary layer precomputation was done with a high resolution
grid that resolved the whisk’s wires, while its subsequent use in
a smoke simulation was done on a much coarser grid. The stan-
dard grid did not resolve the wires, and only approximate velocity
boundary conditions were set, resulting in the fluid slightly follow-
ing the whisk’s motion. Still, our algorithm was able to accurately
generate vortices that are produced by its motion.

In Fig. 11 we show how our method works in conjunction with
static flow fields. In this case we precompute a snapshot image
of static flow around the object, and use it to advect the bound-
ary layer, the vortex particles and the smoke densities. This simple
form of simulation works without an expensive pressure correction
step. Despite the simple underlying setup, we are able to produce
complex structures forming in the wake behind the obstacle from
the interactions of the vortex particles amongst themselves. Lastly,
we demonstrate that our method can be easily extended to free sur-
faces in Fig. 10. Here three obstacles in the liquid produce turbulent
wakes behind them. For this simulation, a particle level set [En-
right et al. 2002] was used to represent the liquid’s surface. Similar
to particles near obstacle walls, we reduce a particle’s kernel size
once it extends past the liquid phase to avoid non-divergence free
velocity fields.

Detailed grid sizes and timings for the examples above can be
found in Table 1. The performance was measured on an Intel Core
i7 CPU with 3.0 GHz. The majority of the time used for our ap-
proach (denoted by ABL time in Table 1) is taken up by the ad-
vection of the artificial boundary layer. For the liquid example of
Fig. 10, the performance is strongly dominated by the particle level
set. Overall, we achieve computing times ranging from 10 to 20
seconds per frame on average. An exception is the example with a
static flow field, which requires only 1.3 seconds per frame.

Limitations A limitation of our method is that our precomputa-
tion currently assumes a rigid object, making it difficult to apply it
to deforming objects such as cloth. To resolve this, a RANS solver
could be coupled to a normal fluid solver to determine the current
shear stresses at the object surface. Alternatively, it may be possible
to precompute suitable boundary layer data for deforming objects
by making use of data compression schemes. Also, our approach for
the precomputation assumes the flow around the object can be de-
scribed by the translational and rotational velocity components. If
the flow around the object varies strongly, e.g., due to strong exter-
nal forces or due to multiple objects in close vicinity, the resulting
confined vorticity can differ from the desired values .

Extending our approach to handle this more accurately is inter-
esting future work. In addition, a trade-off of our method is the
use of vorticity reconstruction at a higher resolution. While this al-
lows us to go beyond the coarse simulation Nyquist limit and get
higher resolution detail (a limitation of the original vortex particle
method), it means the domain and object boundaries as well as the
free-surface boundary conditions are not as well modeled by the
reconstructed high resolution velocity field.
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Figure 11: In this example a static flow field is used to generate complex turbulence around a object with our method.

Setup Fig. 1 Fig. 6 Fig. 10 Fig. 11

Grid res. 160·70·160 150·40·200 100·25·60 250·80·150
ABL upscaling 2 2 2 1
Frame time [s] 19.5 13.4 10.0 1.3
ABL time [s] 5.5 3.7 0.05 0.7
# particles ∼900 ∼700 ∼600 ∼1000
Vortex gain β 6.2 0.4 3.2 4.0
Precomp. res. 70x150x70 70x70x120 100x25x60 250x80x150
Precomp. [s] 220 112 59 227

Table 1: Detailed statistics for our simulation runs. ABL upscal-
ing refers to the up-sampled grid on which vortex particle evalua-
tion and smoke/levelset advection is performed. The precomputa-
tion time is given per database parameter.

7 Conclusions

We have presented an algorithm for simulating wall-induced turbu-
lence in fluid simulations. By modeling turbulence generation with
the mean flow field, we are able to create a precomputed artificial
boundary layer that captures the characteristics of turbulence gener-
ation around objects. Many simulations can then include this object
and associated precomputed data. In particular, we determine tran-
sitioning regions and introduce appropriate vortex particles to rep-
resent turbulence. The particles are then evolved according to the
vortex equations of flow to respect energy conservation and cascad-
ing. This yields the ability to efficiently compute physically plau-
sible simulations of turbulence around rigid objects in a variety of
settings.

In the future, we believe our approach will be useful in real-time
settings, where a full fluid simulation is often too costly. In par-
ticular, promise is shown by Fig. 11, where complex vortex mo-
tion is produced without an expensive full simulation. We are also
interested in continuing the trend of multi-scale physics by more
closely coupling synthetic flow detail methods with our approach.
This would yield a unified three-tier approach to modeling all scales
of turbulence.
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Figure 12: Mean relative error of the artificial boundary layer val-
ues for the car model. A reference simulation is compared to a
spherical interpolation with N samples for the azimuth.
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