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Abstract

This dissertation presents hybrid algorithms for the simulation of fluids and solids

as well as methods for coupling between the two. Physical simulations have become

prevelant in computer graphics due to their ability to predict phenomena with too

many degrees of freedom for hand animation. Nevertheless, it has been challenging

to obtain simulations with sufficiently high quality in a reasonable amount of time,

leading to the development of a large variety of geometric representations and sim-

ulation algorithms, each suited to a particular class of problems. While this makes

choosing and implementing simulation technology difficult, this diversity of techniques

results from attempts to balance tradeoffs. This suggests that increased simulation

fidelity and efficiency can be obtained by synthesizing hybrid techniques, and this

thesis presents examples of such techniques. In addition to algorithmic improvements

we also consider the use of distributed memory parallelism (MPI) to improve the

tractability of highly detailed simulations.

In the first chapters, we concentrate on increasing the fidelity of fluids by reducing

numerical dissipation. Truncation error in the solution of the hyperbolic advection

equation is reduced by a new unconditionally stable advection method. Two semi-

Lagrangian advection steps are combined to obtain second-order accuracy in space

and time while also providing a constructive reinterpretation of MacCormack’s advec-

tion method. To reduce dissipation in smoke, water and explosions, we also present a

Lagrangian/Eulerian scheme that couples a Lagrangian vortex particle method with

an Eulerian pressure-velocity method. Additionally, we consider coupling Lagrangian

deformable and rigid thin shells to Eulerian fluid flows using robust ray casting, fully

preventing fluid leaks across the thin boundary.
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In the next chapters, we discuss simulation of solids using Lagrangian techniques.

We introduce improved altitude springs for the simulation of volumetric tetrahedra,

which we apply to bending in cloth and torsion in hair. We also introduce a simple

mass-spring model for hair simulation that uses tetrahedral simulation techniques

for simulating straight and curly strands of hair. For time integration we develop

an unconditionally stable fully-implicit linear spring that can be included in a semi-

implicit Newmark time integration scheme. For collisions and interactions, we develop

a hybrid scheme that uses inexpensive history-based repulsions coupled with more

accurate geometric collisions. We also present a method for obtaining accurate friction

of deformable objects with collision bodies when a semi-implicit or fully-implicit time

evolution approach is used.
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Chapter 1

Introduction

Computer graphics as a field is concerned with reproducing the visual aspects of a

virtual world. If the goal is a physical and photorealistic world this involves creating

a model for the physical world. Typically this modeling process is divided into geom-

etry, rendering, and animation. In this thesis we consider animation, which involves

specifying a time varying description of the world. Specifically, we are concerned

with animation of objects that are too complicated to animate by hand or with phe-

nomenological procedural models. Examples includes smoke, water, cloth, and hair.

The dominant approach to modeling these types of phenomena has been physical

simulations, which use numerical methods to approximate physical equations that

evolve discrete geometric models over time.

Physical simulation has been studied for many years in the graphics community,

because physical simulation has the advantage that simulations are plausible (that

is, observable in the real world). The disadvantages are that simulation is often

considered difficult to control, because parameters do not have a direct effect, and

that simulations are very slow. The former problem continues to be challenging and

will certainly require significant research, but the latter problem has been helped by

increases in personal computer performance. Additional commodity computer power

continues to increase with graphics processing units (GPUs) and chip multiprocessors.

Such advances in computer power have caused physical simulation to enter a new

golden age in computer graphics.

1



CHAPTER 1. INTRODUCTION 2

Even though simulation has become common, the problem of developing tech-

niques adept at modeling all phenomena remains challenging. Originally, simple

simulation algorithms were developed within the graphics community, but these have

given way to algorithms from computational physics. This echoes the progression of

rendering research which went from the development of useful (and intuitive) phe-

nomenological shading and reflectance algorithms to light transport methods that

were heavily influenced by radiative transfer literature. The influx of computational

methods has had an enormous effect on the quality and prevalence of simulation, but

it also has brought into question the role of graphics researchers developing numerical

techniques; again, this is analogous to rendering researchers.

In this thesis, we show examples that graphics applications, while having specific

utility to graphics, can also yield generally useful techniques for other fields (including

computational physics). In particular, while it is true that simulation in graphics

considers many of the same problems that computational physics does, it is also

true that it has a unique perspective. The fundamental evaluation of any graphics

algorithm is whether an image is plausible. While plausibility can be defined in many

ways, in this thesis we use the most common definition–photorealism. This metric

immediately frees a researcher from absolutely considering physicality of the model

because only plausibility of the visual projection of that model is important. This

means that we can follow a more intuitive research path. Once a visually plausible

technique is developed, a researcher can formalize an algorithm. This is analogous to

the process a mathematician might take to proving a theorem.

Another important goal of graphics is producing visually complex worlds, which

tend to require interactions of many objects of multiple types. This is in contrast to

computational physics which is typically concerned with simple tests that are exper-

imentally verifiable. The techniques that computational physicists use are centered

around simulating one phenomena alone such as a fluid or a solid. While coupling

between two materials is also considered, all-way coupling of many complex phenom-

ena is typically not. Unfortunately, these techniques for individual phenomena must

choose representations and algorithms ideally suited for only that phenomena. Thus,

if another phenomena is simulated, completely different choices must be made. This
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becomes a problem when, in coupling two phenomena, one chooses a single represen-

tation which is optimal for one phenomena but sub-standard for the other. Instead,

our techniques will attempt to instead use multiple representations simultaneously so

that each phenomena can be simulated in the most appropriate way.

Another important goal in graphics is to produce visually rich scenes with many

details. For rendering, modeling and animation, this requires high resolution tex-

tures, geometries, and simulations. Unfortunately, adding resolution to a simulation

is typically much more expensive than for rendering and modeling. Thus, we seek

to provide algorithms that are more efficient at producing detail given a fixed reso-

lution. Numerical methods with high orders of accuracy are usually advocated for

this purpose, but order of accuracy specifies only a convergence rate, and outside the

asymptotic regime, low order methods with better constants might also be possible.

Thus, we consider other techniques for increasing the fidelity of a simulation, often

with the use of hybrid techniques.

Along these lines, we present a series of physical simulation techniques for graphics.

In Chapter 2, we present an unconditionally stable second order accurate advection

scheme that recasts MacCormack advection as a scheme that can be built up with

multiple individual semi-Lagrangian advection steps. In Chapter 3, we present a

coupled Eulerian/Lagrangian fluid solver that combines Lagrangian vortex particles

with a standard Eulerian pressure/velocity solver. In Chapter 4, we present a one-way

coupling technique for simulating Eulerian fluid responding to Lagrangian deformable

and rigid thin-shells using ray tracing. In Chapter 5, we present our basic approach to

solid modeling and introduce a new altitude spring constitutive model. In Chapter 6,

we present a cloth collision technique that uses history aware repulsions/attractions

together with geometric self-collisions. In Chapter 7, we present a hair technique that

uses a tetrahedral view to model hair torsion and bending. In addition, this disser-

tation also considers the parallelization of solids and fluids algorithms in Chapter 8.

Much of the contents of this thesis is drawn from several previous publications in

which I was the primary or main author. In particular, these include [61, 134, 132,

135, 133].



Chapter 2

High Order Advection

2.1 Introduction to Advection Equations

The movement of material is one of the most important aspects of physical simulation.

In this chapter we consider the process of bulk convection through a material in an

Eulerian setting. That is, a density ρ is measured on a fixed grid and a velocity

field causes the density to move between grid points. The model equation for this

transport is the linear convection equation

ρt + V · ∇ρ = 0 (2.1)

which is a hyperbolic partial differential equation. The velocity field V is assumed

to be divergence free; that is, ∇ · V = 0. Here we are advecting density, but other

quantities can be advected such as velocity, strain, or even a signed distance function

that tracks an interface.

Since advection is such an important problem many techniques are available to

solve it. In this chapter we will look at a few such schemes, and we will develop one

that is well suited to graphics as it is stable, can be built from simple and easy to

implement building boxes and provides higher accuracy than the most commonly used

schemes. Before we do this, we motivate the discussion with some simple schemes.

4
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2.2 First order upwinding

There are many ways the advection equation can be discretized in time and space.

A very simple and effective first order scheme is to discretize in time using a forward

Euler scheme and in space using an upwind finite difference scheme. We will consider

this scheme with the 1D wave equation

ut + aux = 0 (2.2)

where a is the velocity. This is discretized as{
un+1

i −un
i

∆t
+ a

un
i+1−un

i

∆x
= 0 a > 0

un+1
i −un

i

∆t
+ a

un
i −un

i−1

∆x
= 0 a < 0

(2.3)

where ∆t is the time step size, ∆x is the grid cell size. One downside of this method

is that it has a time step restriction of ∆t < ∆x/|a|. In addition, this method is only

first order accurate in time and space. The second order errors that occur look very

much like viscosity, so this error is typically called numerical viscosity. In particular,

we can compute the truncation error of this discretization by considering the Taylor

expansion of the method i.e.

un+1
i = un

i − a∆tux + a
∆t∆x

2
uxx −O(∆t3).

The truncation error (defining CFL number 1, i.e. λ = ∆ta/∆x) is

1

2
(λ− 1)

∆t2a

2
uxx + O(∆t3)

which fits the model diffusion term Duxx where D is the diffusion constant.

The obvious way to get rid of this diffusion is to use higher order methods that

match more terms of the Taylor expansion of un+1. However, there are pitfalls to

higher order advection schemes that must be considered. Numerical advection has

been well studied and there are too many schemes to mention here, but we refer the

interested reader to [145] and the survey paper.
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2.3 Semi-Lagrangian Schemes

For the remaining discussion we will focus on semi-Lagrangian schemes which have

been of major interest in computer graphics due to their unconditional stability and

simplicity. Courant et al. [29] proposed a simple method of characteristics scheme for

discretizing advection equations. These semi-Lagrangian type schemes are popular in

many areas (for example in the atmospheric sciences community [142]), because they

can be made unconditionally stable. The simplest semi-Lagrangian scheme traces

back a straight line characteristic and uses trilinear interpolation to estimate the data.

In particular, this scheme traces a characteristic ray backward from the location X

of a grid point we wish to update in the opposite direction of the velocity V (X) and

interpolates at its end point, see Figure 2.1. In other words,

φ(X, tn+1) = I(φn, X −∆tV (X))

where I(φ,Xi) is linear interpolation of φ from the grid points surrounding the inter-

polation point Xi. Notice that this method is identical to upwinding in one spatial

dimension if a CFL < 1 is used. Also note that like the upwinding scheme above, this

approach is first order accurate in space and time.

The order of accuracy can be improved by tracing back curved characteristics

and using higher order interpolation (e.g. [103]). However, this can significantly

increase the complexity and computational cost of the method especially since high

order polynomial interpolants require limiters to avoid oscillations, new extrema and

possible instability. See for example the appendix of [45] which illustrates the use

of a non-oscillatory cubic spline interpolant. Another way to improve the fidelity of

Figure 2.1: The semi-Lagrangian method traces a characteristic ray in the direction
opposite to the velocity and interpolates the data from this “upstream” point.
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semi-Lagrangian schemes is via auxiliary information. For example, after [141] pop-

ularized the semi-Lagrangian method in the field of computer graphics, [45] showed

that vorticity confinement [143] could be used to alleviate the high amount of dissi-

pation, allowing for visually intricate, albeit non-physical flows (see also [134] which

used vortex particles). Similarly, [39] showed that the simple first order accurate

semi-Lagrangian scheme can be used to obtain very accurate level set tracking as

long as particles are tracked with higher order accuracy. The original particle level

set method [38] used fifth order accurate Hamilton-Jacobi WENO [79] and third order

accurate TVD Runge-Kutta [138] making it difficult to extend the method to more

complicated data structures. In contrast, the simple semi-Lagrangian approach pro-

posed in [39] allowed for straightforward extension to octree [96, 95] (see also [144])

and run length encoded [76] data structures.

2.4 BFECC and MacCormack Methods

Back and forth error compensation and correction (BFECC) was first proposed in

[36] with the aim of reducing mass loss in level set methods (see [113, 112]). The key

idea was to realize that a reversible differential equation could be evolved forward

and then backward in time to obtain an error estimate. The difference between the

final result and the original data is approximately twice the advection error. While

inappropriate for non-reversible differential equations such as the heat equation or

level set reinitialization [147], it is useful for problematic advection terms in hyperbolic

differential equations. First, the forward advection operator A is applied to get φ̂n+1 =

A(φn), and then the backward advection operator AR is applied to get φ̂n = AR(φ̂n+1).

The result is used to estimate the error in an advection step as φ̂n − φn = 2e or

e = (φ̂n − φn)/2. Next, this error estimate is used to adjust the initial condition of

the final advection via φ̄n = φn − e and then φn+1 = A(φ̄n). If A was linear, this

could be viewed as evolving both the equation and the error forward in time, i.e.

φn+1 = A(φn − e) = A(φn) − A(e). Intuitively, this treats e as if it were a time n

quantity that needs to be advected forward in time to time n + 1. Since there is no

strong evidence that e is a time n quantity, one could just as well add it directly to the
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time n + 1 state to obtain φn+1 = A(φn)− e = φ̂n+1 − e. And since φ̂n+1 has already

been computed in the error estimation step, this strategy alleviates the need to carry

out a third advection step making the method significantly cheaper. Figure 2.2 shows

a conceptual diagram of these two methods applied.

1

2

1

2

3

4

3
3

(b) Cheaper BFECC(a) Original BFECC

1

2

3
4

1

2

3

Figure 2.2: A conceptual diagram of the steps of the original BFECC method and
the cheaper modified BFECC method (which is actually a modified MacCormack
scheme).

Originally, [36] focused on the application of BFECC to the level set equation

φt + V · ∇φ = 0 using forward Euler time integration combined with first order

accurate upwinding and downwinding for the forward and backward time evolution,

respectively. More recently, a series of papers [84, 85, 37] showed that the forward and

backward advection operators could be replaced by a first order accurate uncondition-

ally stable semi-Lagrangian scheme without changing the desirable properties of the

method. This produces an unconditionally stable, fully second order accurate semi-

Lagrangian method composed of simple first order accurate building blocks. This has

the desirable simplicity of TVD Runge-Kutta methods [138], and interestingly con-

tains backward time evolution similar to the higher order accurate TVD Runge-Kutta
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methods. Thus, the order of accuracy of the simple semi-Lagrangian scheme can be

raised from one to two by increasing the amount of work by a factor of three, since

three semi-Lagrangian advections are required. Alternatively, as pointed out above,

the error estimate could be added directly to φ̂n+1 removing the last advection step,

thus requiring only twice the effort of the first order accurate scheme.

The motivation for this cheaper version of the BFECC scheme came from the

MacCormack method [97], which uses a combination of upwinding and downwinding

to achieve second order accuracy in space and time. Consider the cheaper version of

the BFECC scheme applied to the one dimensional wave equation φt + φx = 0, with

λ = ∆t/∆x, 4−φ = φi − φi−1 and 4+φ = φi+1 − φi. The forward advection step

is φ̂n+1
i = φn

i − λ4−φn, the backward advection step is φ̂n
i = φ̂n+1

i + λ4+φ̂n+1, and

the error estimate is ei = (φ̂n
i − φn

i )/2 = (φ̂n+1
i − φn

i + λ4+φ̂n+1)/2. Finally, φn+1
i =

φ̂n+1
i − e = (φn

i + φ̂n+1
i − λ4+φ̂n+1)/2. This is the same as equation (2b) from the

original [97] if one switches 4− with 4+ throughout. That is, [97] proposed unstable

downwind differencing for the forward step, and unstable upwind differencing for the

backward step, whereas we propose the stable versions for both steps. Note that this

slight modification is also typically referred to as a MacCormack method or modified

MacCormack method, see e.g. [175] and [1]1. Thus while this particular modification

of BFECC is not novel, it adds insight to the (modified) MacCormack method allowing

us to extend it to be unconditionally stable via simple semi-Lagrangian building

blocks. Moreover, when viewed in this fashion many other improvements can be

made. For example, one can automatically revert to the first order accurate scheme

when the upwind and downwind building blocks pull data from non-commensurate

regions (e.g. if one gets information from the fluid and the other from a solid wall

boundary). It also becomes straightforward to apply limiters to prevent new extrema,

which is important since the error correction step of both BFECC and our newly

proposed MacCormack scheme can produce new extrema leading to instability.

1page 224
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2.5 Temporal Accuracy and Stability

Consider the model ordinary differential equation y′ = λy and the Taylor expansion

yn+1 = yn+λ∆tyn+∆t2λ2yn/2+∆t3λ3yn/6+O(∆t4). Forward Euler time integration

is yn+1
fe = (1 + ∆tλ)yn with a leading order truncation error of ∆t2λ2yn/2. The

subsequent step backwards in time from yn+1
fe to ŷn is ŷn = (1 − ∆tλ)yn+1

fe = (1 −
∆t2λ2)yn, so the error is e = (ŷn − yn)/2 = −∆t2λ2yn/2. BFECC computes a new

initial value ȳn = yn − e which is advanced forward in time via yn+1
fb = (1 + ∆tλ)ȳn,

i.e.

yn+1
fb =

(
1 + ∆tλ +

1

2
∆t2λ2 +

1

2
∆t3λ3

)
yn

with a leading order truncation error of −∆t3λ3yn/3. The version of the MacCormack

scheme we consider in this chapter is

yn+1
m = yn+1

fe − e = (1 + ∆tλ +
1

2
∆t2λ2)yn

with a leading order truncation error of ∆t3λ3yn/6. That is, the MacCormack method

is identical to second order accurate Runge-Kutta for ordinary differential equations.

All this can be illustrated by solving y′ = −y/2 with y0 = 1.3 as shown in Table 2.1.

Forward Euler BFECC MacCormack (RK2)
∆t Error Order Error Order Error Order
1.000 -6.61e-02 – -3.35e-02 – 1.73e-02 –
.500 -3.35e-02 1.0 -7.13e-03 2.2 3.40e-03 2.3
.250 -1.67e-02 1.0 -1.59e-03 2.2 7.66e-04 2.2
.125 -8.36e-03 1.0 -3.72e-04 2.1 1.82e-04 2.1

Table 2.1: y′ = −y/2 with y0 = 1.3. As predicted the error of the MacCormack
scheme is about half in magnitude and positive compared the to the back and forth
scheme.
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Next, we consider the regions of stability. As usual, forward Euler requires |1 +

∆tλ| ≤ 1 so ∆tλ = x + yi must satisfy (x + 1)2 + y2 ≤ 1. Similarly, BFECC requires

(1 + x + 1
2
x2 − 1

2
y2 + 1

2
x3 − 3

2
xy2)2 + (xy + y + 3

2
x2y − 1

2
y3)2 ≤ 1. The graphs of the

stability regions are shown in Figure 2.3. Note that the BFECC method includes a

significant portion of the imaginary axis similar to third order TVD Runge-Kutta.

-2 -1 0 1 2 3

-2

-1

0

1

2

RK3
BFECC
MacCormack � RK2
Forward Euler

Figure 2.3: Stability regions for ordinary differential equations.
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2.6 The Wave Equation

Next we analyze the spatial and temporal properties of the BFECC and MacCormack

schemes by revisiting the wave equation. Without loss of generality we will assume

that a = 1 in (2.2) so that

ut + ux = 0,

alleviating the need to consider the two upwinding cases explicitly. Rearranging the

discretization from (2.3) and defining the CFL number λ = ∆t/∆x,

un+1
i = un

i −
∆t

∆x
(un

i − un
i−1) = (1− λ)un

i + λun
i−1.

This is used to write BFECC’s discretization as a step forward in time,

ûn+1
i = (1− λ)un

i + λun
i−1,

followed by a step backward in time,

ûn
i = (1− λ)ûn+1

i + λûn+1
i+1

= ((1− λ)2 + λ2)un
i + λ(1− λ)(un

i−1 + un
i+1)

followed by a correction of the original data using the estimated error,

ũn
i = un

i − (ûn
i − un

i )/2

= un
i − λ(1− λ)(un

i+1 − 2un
i + un

i−1)/2,

followed by a step forward in time using this error corrected data,

un+1
i = (1− λ)ũn

i + λũn
i−1

=

(
−1

2
λ2 +

1

2
λ3

)
un

i−2 +

(
1

2
λ + 2λ2 − 3

2
λ3

)
un

i−1

+

(
1− 5

2
λ2 +

3

2
λ3

)
un

i +

(
−1

2
λ + λ2 − 1

2
λ3

)
un

i+1.
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Using the Taylor expansions of un
i−2, un

i−1 and un
i+1, and using ut + ux = 0 leads to

un+1
i = un

i −∆x(un
i )xλ +

∆x2

2
(un

i )xxλ
2 − ∆x3

6
(un

i )xxx(−3λ2 + λ + 3λ3)

+
∞∑
i=4

ξbf(i, ∆x, ∆t)

= un
i + ∆t(un

i )t +
∆t2

2
(un

i )tt +
∆t3

6
(un

i )ttt

(
−3

λ
+

1

λ2
+ 3

)
+

∞∑
i=4

ξbf(i, ∆x, ∆t)

where ξbf(i, ∆x, ∆t) = O(∆xi−2∆t2 +∆xi−3∆t3 +(i mod 2)∆xi−1∆t). Thus, the final

terms can be simplified to
∑∞

i=4 ξbf(i, ∆x, ∆t) = O(∆x2∆t2 + ∆x∆t3 + ∆x4∆t).

The MacCormack method instead uses the error estimate to correct the already

advected data resulting in

un+1
i = ûn+1

i − (ûn
i − un

i )/2

=

(
1

2
λ +

1

2
λ2

)
un

i−1 + (1− λ2)un
i +

(
−1

2
λ +

1

2
λ2

)
un

i+1.

Taylor expansions and ut + ux = 0 can be used to rewrite this as

un+1
i = un

i −∆x(un
i )xλ +

∆x2

2
(un

i )xxλ
2 − ∆x3

6
(un

i )xxxλ +
∞∑
i=4

ξm(i, ∆x, ∆t)

= un
i + ∆t(un

i )t +
∆t2

2
(un

i )tt +
∆t3

6
(un

i )ttt
1

λ2
+ O(∆x2∆t2 + ∆x4∆t)

since ξm(i, ∆x, ∆t) = O(∆xi−2∆t2) when i even and ξm(i, ∆x, ∆t) = O(∆xi−1∆t)

when i is odd.

For a fixed CFL number (i.e. fixed λ) with ∆t = λ∆x, the final summations

in both methods become O(∆x4) or identically O(∆t4). Note that the first three

terms of these expressions agree with the exact solution, so the fourth term in each

expression is the leading local truncation error. We write the truncation error as
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E(λ)∆t3uttt/6 + O(∆t4) where Ebf (λ) = 1/λ2 − 3/λ + 2 for BFECC and Em(λ) =

1/λ2 − 1 for the MacCormack method. Note that these results were derived for the

wave equation under the assumption that λ ≤ 1. Since an unconditionally stable

approach allows for larger λ’s, a similar piecewise analysis can be carried out for

λ ∈ (1, 2], λ ∈ (2, 3], etc. to obtain

Ebf (λ) =


2 + 1

λ2 − 3
λ

λ ≤ 1

2− 6
λ3 + 13

λ2 − 9
λ

1 < λ ≤ 2

2− 30
λ3 + 37

λ2 − 15
λ

2 < λ ≤ 3

(2.4)

and

Emac(λ) =


−1 + 1

λ2 λ ≤ 1

−1− 6
λ3 + 7

λ2 1 < λ ≤ 2

−1− 30
λ3 + 19

λ2 2 < λ ≤ 3

(2.5)

and so on. Using these expressions, we can compute the leading truncation error at

each grid point xi as |∆t3uttt(xi, t)E(λ)/6| and the average error over n grid points as

(1/n)
∑n

i=1 |∆t3uttt(xi, t)E(λ)/6|. Computing this for a single time step of ut+ux = 0

with u(0, x) = sin 4πx and n = 400 while varying the CFL number λ produces the

graph depicted in Figure 2.4 (left). Solving the same problem numerically for one

time step and graphing the computed average error magnitude similarly yields the

graph depicted in Figure 2.4 (right).

Next, consider solving the wave equation with u(0, x) = sin 4πx and periodic

boundary conditions to a final time of t = .5 (one period). Table 2.2 compares

the average errors obtained using first order accurate upwinding, BFECC and the

MacCormack method with a CFL of .75. Since the CFL is less than one, upwind

building blocks are used for both BFECC and the MacCormack method. Spatial

refinement shows the expected results for all three methods. Table 2.3 shows similar

results for a CFL of 1.75 where semi-Lagrangian building blocks are used for BFECC

and the MacCormack method. Note that the the first order accurate upwinding was

replaced with the first order accurate semi-Lagrangian method as well.
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Figure 2.4: Error versus CFL shown for analytic (left) and numerical simulation
(right)

Upwinding BFECC MacCormack
n Error Order Error Order Error Order

101 6.0e-2 – 1.3e-3 – 4.7e-3 –
201 3.1e-2 1.02 3.3e-4 2.09 1.2e-3 1.96
401 1.6e-2 1.01 8.2e-5 1.97 2.9e-4 2.01
801 7.8e-3 1.00 2.1e-5 1.99 7.2e-5 2.00

Table 2.2: Wave equation solved with upwind building blocks and CFL=.75.

Semi-Lagrangian BFECC MacCormack
n Error Order Error Order Error Order

101 2.6e-2 – 5.6e-4 – 5.3e-3 –
201 1.3e-2 .98 1.4e-4 2.09 1.3e-3 2.21
401 6.7e-3 1.02 3.5e-5 1.96 3.4e-4 2.05
801 3.3e-3 1.02 8.8e-6 1.99 8.4e-5 2.05

Table 2.3: Wave equation solved with semi-Lagrangian building blocks and
CFL=1.75.
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2.7 New Extrema

Whether first order accurate upwind building blocks (and a CFL less than one) or

simple semi-Lagrangian building blocks are used, the first step forward in time and the

subsequent step backward in time produce monotone data. That is, ûn is bounded by

ûn+1 which is in turn bounded by un. However, nothing special can be stated about

the manner in which the error is computed, or the result obtained when the error

estimate is applied to either un in BFECC or ûn+1 in the MacCormack scheme. In

particular, this error correction step can lead to new extrema and possible instability.

Figure 2.5 shows the oscillations obtained when using BFECC and the MacCormack

scheme to advect a square wave for one period. A simple choice of limiter consists

of limiting the final solution at each grid point to be bound by the values used in

computing the first advection step from un to ûn+1. For example, if the base of

the semi-Lagrangian ray used in this first advection step interpolated data from the

interval [xj, xj+1], then we would postprocess the final result (from either BFECC or

MacCormack) to be clamped between min(un
j , u

n
j+1) and max(un

j , u
n
j+1). This readily

generalizes to multiple spatial dimensions, adaptive and non-Cartesian grids. Another

commonly used limiter reverts to a first order accurate method when the higher order

accurate method would overshoot (see e.g. [70]). For our method this requires no

further computation as an out of bounds value is simply replaced with the value

from the first semi-Lagrangian advection step, that is, no error correction is used.

Figure 2.5 shows the results obtained by applying the clamping limiter to advection

of the square wave initial data, and though it is not depicted we also ran the example

using the reversion to first order accurate approach which yielded nearly identical

results to clamping. We also compared clamping to reversion using a 2D flow example

in Figure 2.11 in which we noticed no significant difference between the two methods.

Despite this, we prefer the reversion approach as it yields better results when the semi-

Lagrangian MacCormack scheme is applied to free surface flows where the reversible

PDE assumption of our modified MacCormack scheme (and also BFECC) breaks

down due to the linear extrapolation of velocities to outside the fluid region.
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Figure 2.5: Both BFECC and the MacCormack method can create new extrema,
as shown here where a square wave is advected for one period. Of course, these
oscillations can be avoided with a simple limiting technique.

2.8 Zalesask’s Disc

We use the the standard Zalesask’s Disc test to illustrate the behavior of these meth-

ods for multidimensional advection. The initial data is a slotted circle centered at

(50, 75) with radius 15 and a 5 by 25 size slot. We show the results after advect-

ing one rotation (to t = 628) in a rotational velocity field V = π
314

(50 − y, x − 50).

Although BFECC was originally proposed for level set methods, this particular ex-

ample is not meant to test these methods ability to treat interfaces. Instead, we are

focusing on how these methods behave for multidimensional advection. Thus, we do

not consider reinitialization [147] or the addition of particles [38]. In fact, [39] showed

that the addition of accurately advected particles allows one to reduce high order

accurate level set advection to first order accuracy without adverse results. Still, ac-

curate multidimensional advection is quite useful for various other problems such as

for incompressible flows. In the figures, we plot the zero isocontours for visualization
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purposes but stress that the errors are computed across the entire domain (i.e. all

isocontours). In particular, we compute the order of accuracy by comparing the error

e on the coarse grid to the error e′ on the fine grid at coincident node locations as

log2
e(i,j)

e′(2i−1,2j−1)
and average all of these values to obtain the values shown in the tables

below.

Figure 2.6 compares first order accurate upwinding with the versions of BFECC

and the MacCormack scheme obtained using first order accurate upwind building

blocks. Figure 2.7 compares the simple first order accurate semi-Lagrangian method

with the versions of BFECC and the MacCormack scheme obtained using simple

first order accurate semi-Lagrangian building blocks. Note that the semi-Lagrangian

method is fully multidimensional, so even though the CFL is .75 in both Figure 2.6

and Figure 2.7 the resulting numerical methods are all different (in contrast to one

spatial dimension where semi-Lagrangian and upwind building blocks are identical

for CFL’s less than one). Finally, Figure 2.8 repeats the calculations from Figure 2.7

using a higher CFL of 1.75.

Upwinding BFECC MacCormack

Grid Size Error Order Error Order Error Order
� 1012 1.8 – 8.9e-2 – 1.6e-1 –
� 2012 9.6e-1 1.05 3.9e-2 1.79 6.3e-2 1.93
� 4012 5.2e-1 1.04 1.8e-2 1.77 3.2e-2 1.59
� 8012 2.8e-1 1.02 7.6e-3 1.98 1.3e-2 2.08
� 16012 1.5e-1 1.01 3.1e-3 2.04 5.5e-3 2.08

Figure 2.6: Zalesask’s disc rotation comparing simple upwinding with the versions
of BFECC and the MacCormack scheme obtained using first order accurate upwind
building blocks (CFL=.75).
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Semi-Lagrangian BFECC MacCormack

Grid Size Error Order Error Order Error Order
� 1012 1.8 – 9.9e-2 – 1.7e-1 –
� 2012 1.0 1.04 4.1e-2 1.73 6.7e-2 1.95
� 4012 5.4e-1 1.03 2.0e-2 1.67 3.3e-2 1.60
� 8012 2.9e-1 1.02 8.4e-3 1.93 1.4e-2 2.06
� 16012 1.5e-1 1.01 3.5e-3 2.00 5.9e-3 2.06

Figure 2.7: Zalesask’s disc rotation comparing the simple first order accurate semi-
Lagrangian method with the versions of BFECC and the MacCormack scheme ob-
tained using simple first order accurate semi-Lagrangian blocks (CFL=.75).

Semi-Lagrangian BFECC MacCormack

Grid Size Error Order Error Order Error Order
� 1012 2.0 – 5.4e-2 – 1.5e-1 –
� 2012 1.1 1.02 2.4e-2 1.81 6.0e-2 1.82
� 4012 5.6e-1 1.02 1.0e-2 1.84 3.0e-2 1.62
� 8012 3.0e-1 1.01 4.0e-3 1.98 1.2e-2 1.99
� 16012 1.5e-1 1.02 1.5e-3 2.07 5.2e-3 2.01

Figure 2.8: Zalesask’s disc rotation comparing the simple first order accurate semi-
Lagrangian method with the versions of BFECC and the MacCormack scheme ob-
tained using simple first order accurate semi-Lagrangian blocks (CFL=1.75).
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2.9 Incompressible Flow

Consider inviscid incompressible flow on a standard MAC grid. First the advection

terms are updated to obtain an intermediate velocity, and then a Poisson equation is

solved for the pressure which is subsequently used to make the intermediate velocity

divergence free.

Consider a [0, 3] × [0, 1] domain divided into 300 × 100 MAC grid cells with a

radius .125 circle centered at (.5, .5). The horizontal velocity is set to one at the left

and right boundaries, and the vertical velocity is set to zero at the top and bottom

boundaries. Zero derivative Neumann boundary conditions are used for the pressure

on all four boundaries. Figure 2.9 compares the first order accurate semi-Lagrangian

method to BFECC and the MacCormack method using first order accurate semi-

Lagrangian building blocks. The MacCormack method is shown both with and with-

out the extrema clamping procedure discussed earlier. Note that each component

of the velocity field is separately advected and limited. Note that BFECC and the

MacCormack method both achieve similarly higher Reynolds number flows than the

first order accurate semi-Lagrangian method. Whereas Figure 2.9 was obtained with

a CFL of .75, comparable results are shown in Figure 2.10 with a higher CFL of

1.75. In Figure 2.11 we depict the results of applying the extrema clamping strategies

discussed in Section 2.7.

Both BFECC and the MacCormack method do not perform well when information

is mixed from disparate regions of the flow. This happens frequently near domain

boundaries leading to poor error estimates in these regions. Thus, for both BFECC

and the MacCormack method, we revert to the first order accurate semi-Lagrangian

scheme at any grid point whose semi-Lagrangian characteristic could source from a

solid wall or solid circle boundary (i.e. CFL×max(∆x, ∆y)).

Now consider free surface flows which combine incompressible flow with level set

advection for interface tracking. We use the basic free surface model described in [40]

with the improved second order accurate free surface pressure boundary condition

proposed in [41] and the improved fast marching method from [95]. In addition,

we use first order accurate semi-Lagrangian level set advection together with second
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Figure 2.9: Inviscid incompressible flow comparing the first order accurate semi-
Lagrangian method to BFECC and the MacCormack method using first order accu-
rate semi-Lagrangian building blocks (CFL=.75).
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Figure 2.10: Inviscid incompressible flow comparing the first order accurate semi-
Lagrangian method to BFECC and the MacCormack method using first order accu-
rate semi-Lagrangian building blocks (CFL=1.75).
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Figure 2.11: Inviscid incompressible flow comparing the semi-Lagrangian MacCor-
mack method with clamping to the semi-Lagrangian MacCormack method with re-
version to first order when new extrema are detected (CFL=.75).
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order accurate Runge-Kutta advection for the particles because [39] showed that the

Particle Level Set Method with a second order accurate particle advection scheme

obviates the need for high order level set advection.

As [40] does, we extrapolate a divergence free velocity field across the interface

for the level set and incompressible advection, resulting in lower order values in those

regions. The BFECC or semi-Lagrangian MacCormack error computation then de-

pends on these less accurate values which creates new extrema which we could clamp.

Unfortunately, clamping tends to pollute the solution with the incorrect error cor-

rection, thus when new extrema are detected we advocate reverting to first order

accurate semi-Lagrangian advection instead.

Consider a spherical radius .5 drop located at (.5, .75, .5) falling (with gravity

vector (0,−9.8, 0)) into a pool at height .412134 contained in a walled domain of

[0, 1] × [0, 1.5] × [0, 1] as shown in Figure 2.12, 2.13 and 2.14. As with the flow past

circle example, advection was reverted to the first order accurate semi-Lagrangian

method in cells close to the domain boundaries. Without any limiter the simulation

becomes unstable so we apply the following limiter variants: (1) clamping of new

extrema, (2) clamping of new extrema but always using the first order accurate semi-

Lagrangian method near the interface and (3) reverting to the first order accurate

semi-Lagrangian method at cells where new extrema are found. (1) and (3) do well

at producing higher Reynolds number flows while (2) mitigates most of the benefit

of the second order accurate approach.

Finally, consider a radius .2 solid ball splashing into a pool of water in a [0, 1.5]×
[0, 1]× [0, 1] domain. The ball is kinematically moved from (1.25, .55, .5) to (.8, .1, .5)

between time 0 and .075 using linear interpolation, and the fluid has the gravity

vector (0,−9.8, 0). Figure 2.15, 2.16 and 2.17 show a comparison between the first

order accurate semi-Lagrangian method and the three limiter strategies described

above. Again we note that without a limiter, the simulation is unstable. Also, as

with the flow past circle example and the falling drop example, advection near the

domain boundaries and the object boundaries is reverted to the first order accurate

semi-Lagrangian method.
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Semi-Lagrangian MacCormack (Clamp Extrema)

MacCormack (Revert) MacCormack (Clamp Extrema)
first order accurate near interface

Figure 2.12: Inviscid incompressible free surface flow of a drop falling into a pool.
Notice how the MacCormack methods (top right, bottom left) produce additional
detail. Using the first order accurate semi-Lagrangian advection near the interface
(bottom right) removes much of the advantage of the second order accurate method
(bottom right). (200× 300× 200 grid, t = 6/24, CFL=1.75).



CHAPTER 2. HIGH ORDER ADVECTION 26

Semi-Lagrangian MacCormack (Clamp Extrema)

MacCormack (Revert) MacCormack (Clamp Extrema)
first order accurate near interface

Figure 2.13: Inviscid incompressible free surface flow of a drop falling into a pool
(200× 300× 200 grid, t = 10/24, CFL=1.75).
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Semi-Lagrangian MacCormack (Clamp Extrema)

MacCormack (Revert) MacCormack (Clamp Extrema)
first order accurate near interface

Figure 2.14: Inviscid incompressible free surface flow of a drop falling into a pool
(200× 300× 200 grid, t = 18/24, CFL=1.75).
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Semi-Lagrangian MacCormack (Clamp Extrema)

MacCormack (Revert) MacCormack (Clamp Extrema)
first order accurate near interface

Figure 2.15: Inviscid incompressible free surface flow of a solid ball thrown into a
pool. Note that the clamp and reversion MacCormack variants (upper right, lower
left) capture the vortex sheeting due to the ball’s penetration that is missed when
using the semi-Lagrangian method or the clamped MacCormack method that uses
the first order accurate semi-Lagrangian method near the interface (upper left, lower
right). (450× 300× 300 grid, t=4/24)
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Semi-Lagrangian MacCormack (Clamp Extrema)

MacCormack (Revert) MacCormack (Clamp Extrema)
first order accurate near interface

Figure 2.16: Inviscid incompressible free surface flow of a solid ball thrown into a
pool. (450× 300× 300 grid, CFL=1.75, t=10/24)
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Semi-Lagrangian MacCormack (Clamp Extrema)

MacCormack (Revert) MacCormack (Clamp Extrema)
first order accurate near interface

Figure 2.17: Inviscid incompressible free surface flow of a solid ball thrown into a
pool. (450× 300× 300 grid, CFL=1.75, t=40/24)
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2.10 Conclusion

Motivated by the BFECC method, we rewrote a version of the MacCormack method

into a similar form facilitating its extension to unconditional stability while still pre-

serving second order accuracy in space in time. The MacCormack method only re-

quires two first order accurate advection steps whereas BFECC is 50% more expensive

requiring three advection steps. Although the semi-Lagrangian versions of BFECC

and the MacCormack scheme are not fully monotone, we proposed a simple limiter

that preserves monotonicity. We illustrated the expected behavior of the method on

both simple and more complex problems, noting that difficulties could arise if the

semi-Lagrangian rays mix information from disparate regions such as from both solid

wall boundaries and fluid regions. In those instances, it is simple to revert to the

first order accurate semi-Lagrangian method. We also saw that using an increasing

number of simple semi-Lagrangian rays can improve accuracy. In particular one ray

yields the first order accurate semi-Lagrangian method, two rays yield the second

order accurate MacCormack method and three rays yield the second order accurate

BFECC method, which has a lower truncation error magnitude than the MacCor-

mack method in some problems. Thus an obvious question is whether one can do

better than the BFECC method with three rays, perhaps even obtaining third order

accuracy.



Chapter 3

A Hybrid Incompressible Fluid

Solver

3.1 Introduction

While the numerical simulation of fluids is now common in the special effects indus-

try, highly turbulent phenomena such as explosions remain challenging. It is difficult

to resolve these effects even on the highest resolution grids using state of the art tech-

niques. Regardless, directors frequently desire these exciting and compelling effects,

and filming them practically is not always possible especially when complex camera

motions (such as flying through an explosion) are required.

In the last chapter we discussed how to evolve quantities given a velocity field,

while in this chapter we introduce a technique for obtaining such a field. In particu-

lar, we consider the solution of the incompressible Navier-Stokes equation to simulate

water, smoke, etc. First, we review the standard velocity/pressure solver, the tech-

nique that is commonly used in graphics. We will also review vorticity confinement,

a method for increasing the detail of a simulation. In addition, we consider vortex

methods, a commonly used alternative formulation for incompressible fluid simula-

tion. These techniques are then combined into a hybrid technique that better handles

turbulent flows.

32
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Central to this discussion is the balance between Eulerian (grid-based) and La-

grangian (particle-based) approaches. Fluids typically are simulated using Eulerian

approaches, even though this makes them subject to numerical dissipation of veloc-

ities. Vorticity confinement, grid subdivision, and higher order methods are used to

combat these problems. Some researchers also turn to particle based approaches,

which have the ability to conserve quantities exactly. This chapter introduces a

method that combines particle methods and grid methods to balance tradeoffs. More-

over, we demonstrate the ability to generate very turbulent effects that cannot be

achieved with grid based methods (even with vorticity confinement) or particle based

methods alone.

3.2 Pressure Velocity Methods

The incompressible Navier-Stokes equations can be written as

ut + (u · ∇) u +
1

ρ
∇p = µ∇2u + f (3.1)

∇ · u = 0 (3.2)

with velocity u = (u, v, w), pressure p, density ρ, and f representing the external

force. These equations are typically solved on a grid, but particle methods such as

SPH (e.g. [33, 65, 122, 107]) avoid the memory requirements of a three dimensional

grid, but exhibit other difficulties such as the cost of finding the nearest neighbors,

complications involved with enforcing incompressibility, particle redistribution, etc.

We can solve Equation 3.1) and Equation 3.2 using a forward Euler time discretization

and the Chorin projection method [25] on a MAC grid [68] as follows (ignoring the

viscosity term):

1. Advect velocity u? = un −∆t(u · ∇)u

2. Add external velocities u?+ = ∆tf

3. Compute pressures by solving ∇2p = 1
∆t
∇ · u?
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4. Compute divergence free velocity field un+1 = u−∆t∇p.

In fact, both [51] and [141] used this method, leading to the recent popularity of

computer graphic smoke simulation using the three dimensional Navier-Stokes equa-

tions. However, A major trouble with this method is numerical dissipation in the

advection term shown in Chapter 2. Figure 3.2(a) shows a smoke simulation suffering

from numerical dissipation. Under refinement, dissipation goes to zero, but refine-

ment into this asymptotic regime is prohibitively expensive. So, some authors have

considered adaptive data structures like octrees [96], RLE structures [76] or AMR

[9] to allow spatially varying resolution. These schemes are often expensive as the

overhead of adaptivity is high, even if theoretically these methods are more efficient.

It can also be difficult to choose refinement criteria that ensure adequate grid reso-

lution everywhere interesting flow might develop, and poor refinement criteria result

in small scale detail never being formed. Sometimes, a computation can be reduced

to a two-dimensional spatial problem. For example, [126] introduced a method for

simulating large scale explosions that avoids the high memory requirements of three

dimensional grids by simulating a series of two dimensional slices that are placed

in three dimensional space and used to define a wind field to advect particles. The

technique produced impressive nuclear explosions, but is not as applicable to prob-

lems that have less inherent symmetry. Moreover, interesting phenomena such as fuel

pocket combustion, etc. cannot be modeled in the free space between slices where

interpolation is relied on to generate the velocity field. The other obvious method for

reducing numerical diffusion is higher order advection methods like the ones presented

in Chapter 2. While these methods reduce diffusion, they cannot eliminate it, and

they are more complicated to implement.

3.2.1 Vorticity Confinement

Vorticity confinement in [45] (see also [143]) has been one of the most important

enabling technologies for graphics fluid simulation. The technique amplifies existing

grid vorticity, allowing much more turbulent flows than the underlying grid would

typically support. In fact, with this technique, simple and stable semi-Lagrangian
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Figure 3.1: Graphical depiction of computation of vorticity confinement fields.

advection approaches have typically been used in lieu of higher order schemes. In

particular, the vorticity confinement force is computed by taking the curl of the

velocity field to obtain the vorticity

ω = ∇× u. (3.3)

Then, a vector field

N =
∇|ω|
|∇|ω||

is constructed that points towards the concentrations of vorticity, and this is used to

construct an orthogonal force

f = ε∆x(N × ω)

that amplifies the vorticity concentration, where the scaling by grid size ∆x ensures

convergence under refinement and the strength is controlled with the scalar ε. See

Figure 3.1 for these quantities computed on an example velocity field. This technique

works well, producing the examples in Figure 3.2(b,c).

Despite the usefulness of this approach, some major drawbacks remain. For ex-

ample, a three dimensional computational grid requires a lot of memory, so it can

be difficult to simulate large scale phenomena. Also, vorticity confinement can only

amplify existing grid vorticity, so if the resolution of the grid is not fine enough to
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ε = 0 ε = .25 ε = .5 ε = 2

(a) (b) (c) (d)

Figure 3.2: Simulations with varying vorticity confinement illustrate that too much
confinement causes artifacts and instabilities. In fact, a large value of ε actually
prevents the smoke from properly rising.

capture object interaction, combusting fuel pockets, upwelling, etc., vorticity confine-

ment cannot recover them. Lastly, if ε is set too high, it causes unstable results, like

those shown in Figure 3.2(d).

3.3 Vortex Particle Methods

Vortex methods are another class of fluid simulation techniques that are based on vor-

ticity Equation 3.3 instead of velocity and pressure. The vortex evolution equations

are derived by taking the curl of equation Equation 3.1, obtaining

ωt + (u · ∇) ω − (ω · ∇) u = µ∇2ω +∇× f (3.4)

where the velocity advection term has been split into a vorticity advection term

(u ·∇)ω and a vortex stretching/tilting term (ω ·∇)u. Equation 3.2 vanishes as any

vorticially defined field is divergence free.
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Although these equations can be solved on a grid (e.g. for graphics [179]), particle

based methods (for graphics [52]) have the distinct advantage of avoiding numerical

dissipation that smears out the flow making it appear more viscous. A vortex particle

stores a vorticity value ω which includes both a magnitude and direction. A kernel

(one typically uses a clamped Gaussian with compact support or a tent function) is

used to define the vorticity in a region of space nearby the particle. Given a collection

of particles, the vorticity at a point is defined by summing the contributions from all

nearby particles. The flow evolves as the particles move around and their vorticity

values change. For example, viscous flow strongly dissipates large velocity gradients

according to the µ∇2ω term. This is typically implemented with some sort of particle

exchange method or with the aid of a background grid.

The major disadvantages are in finding boundary conditions for the vector valued

Poisson equation especially for moving and deforming solid objects, dealing with

particle redistribution techniques to adequately represent and resolve the flow, and

difficulties associated with the vortex stretching term (that happens to be identically

zero in two spatial dimensions as in [52]). In addition, purely particle based vortex

methods suffer from many of the same issues that apply to SPH methods. In fact,

Neither of the graphic papers mentioned above [179, 52] handled obstacles, and both

operated only in two spatial dimensions. For some examples of such methods in

computational physics, see [92, 121].

Nevertheless, the advantage of particle-based vortex methods is that carrying

vorticity on the particles causes vorticity to be conserved, allowing inviscid, high

Reynolds number turbulent flows, i.e. one avoids the grid based damping artifacts

(that one uses vorticity confinement to reduce). In addition, particle methods are

optimal from a memory storage standpoint for adaptively resolving a flow field.

To combat some of the problems with Lagrangian vortex particle methods, while

still maintaining their advantages, authors such as [166, 28]) frequently use a back-

ground grid for some parts of the computation. In particular, the solution of Equa-

tion 3.4 requires a velocity field, which can be determined from the vorticity values

stored on the individual particles. This is still typically a rather complex process,

because one has to solve a vector valued Poisson equation and deal with complicated
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boundary conditions. Besides computing the velocity field, viscosity (vorticity diffu-

sion) and vortex stretching/tilting is also handled on the grid. A step of a vortex

particle solver that uses a background grid proceeds as follows:

1. Evolve the particles xn+1 = xn + ∆tu(xn)

2. Map vorticity onto the grid

3. Stretch and tilt vorticity

4. Reconstruct velocity field u

3.4 Hybrid Solver

Taking stock of the advantages of pressure/velocity (PV) solvers compared to vortex

particle solvers (VP), we see that their advantages and disadvantages complement

each other perfectly. PV solvers have numerical diffusion where VP solvers have

none. VP solvers have difficulty generating a velocity fields where this is easy for

PV solvers. VP solvers have difficulty sampling all locations uniformly, whereas PV

solvers use a uniform grid. VP solvers also have difficulty with boundary conditions

whereas they are intuitive in PV solvers. Thus, our goal is to create a solver that

conserves vorticity by using the Lagrangian representation but retains the simplicity

and effectiveness of the grid based PV solver. We note that [35] and [47] also had

this goal, and they proposed coupling the two methods together in two and three

dimensions, respectively, with what they referred to as “ad hoc” techniques. Some of

the problems with their coupling procedures were discussed in [48, 49], and we also

discuss downsides of their method in Section 3.4.2.

Thus, we will store and evolve particles that hold vorticity. This typically would

require us to solve a vector valued Poisson equation to reconstruct a velocity field.

However, one of the major benefits of our approach is that this step can be avoided

entirely, as we instead use the velocity field determined by solving Equations 3.1

and 3.2 which only requires the solution of a simple scalar Poisson equation with

straightforward boundary conditions. Moreover, a standard vortex method needs to
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carefully place particles to resolve the flow. However, our technique does not require

perfect distribution (and redistribution) of particles, because the grid based method

adequately resolves the flow at least as well as in [45]. Our vortex particles just provide

increased details where they happen to exist. Thus we did not need to redistribute

or reseed particles for any of our examples. This is a major contribution of using the

grid based solver to determine the velocity field. Additionally, since our goal is to

eliminate dissipation, we ignore the diffusion/viscosity term of the vortex equations,

similar to how we ignore the viscosity term in Equation 3.1. In the next sub-sections

we discuss the precise way the individual solvers are coupled in both directions.

3.4.1 Solving the Particles

Given the velocity field, u, determined via the grid based method, trilinear inter-

polation is used to define a velocity for advecting each particle. This accounts for

the (u · ∇)ω term in Equation 3.4. We typically inject particles with random initial

vorticity at a uniform rate at a source, and let them passively advect through the

flow. However, particles could also be created on the fly either near objects or near

concentrations of high vorticity, and given the initial vorticity of the surrounding flow.

Another nice feature of our approach is that the grid based solver creates a velocity

field with proper boundary conditions. And since the particles are advected with

that velocity field, they tend to avoid interpenetration with obstacles. However, if

particles do enter solid geometry, we could delete them or project them back out of

the object using an object level set. Since we use a high density of particles (typically

thousands), either option suffices.

Besides advecting the particles, we need to consider the effects of the vortex

stretching term in Equation 3.4. This is done by computing the derivatives of

the velocity field on the grid with central differences, trilinearly interpolating them

to the particle location, and then augmenting the vorticity on the particle with

ω += ∆t(ω · ∇)u. In isolation, this term can be thought of as an ordinary differen-

tial equation (ODE) that changes both the magnitude and direction of the particle’s

vorticity. Unfortunately, the vorticity magnitude can exponentially increase when
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the ODE has a positive eigenvalue based on the fluid velocity gradient. To ensure

stability one could clamp the magnitude, only allow it to decrease, etc. However,

since the goal of our particle based method is to preserve vorticity concentration, we

rescale the final vorticity to preserve its magnitude in all of our simulations. In that

case, the effect of this term is to spin the particle’s vorticity vector without affecting

its magnitude. This limits the numerical accuracy of the vortex particle method,

but is consistent with our reliance on the the grid based method to provide most of

the bulk flow features with the vortex particles providing an extra level of detail via

vorticity concentration preservation. Along the same lines, we completely ignore the

∇× f term noting that forces (such as buoyancy) still have influence as they affect

the velocity field via Equation 3.1.

3.4.2 Vorticity Forcing

Equation 3.4 can be rewritten in conservation form

ωT
t +∇ · (uωT − ωuT − µ(∇ω)T − f ∗) = 0 (3.5)

where we have written the equations in row instead of column form, and f ∗ is the

skew symmetric cross product matrix based on f . This equation demonstrates that

vorticity should be conserved (neither created nor destroyed), highlighting one of the

major problems with the work of [47]. They used an “ad hoc” method to transmit

the vorticity from the particles to the grid based velocity field that does not conserve

the total vorticity of that velocity field, i.e. they change the values of the grid based

velocity without regard for vorticity conservation. We believe that vorticity conser-

vation is what leads to better quality, especially visual quality. Without this, fluid

swirling, etc., seems to appear magically. Our key innovation is to use the force f

in Equation 3.1 to drive the grid based velocity field towards the desired vorticity.

Although Equation 3.5 dictates that all body forces conserve vorticity, the vortic-

ity confinement force is the only one we know of that can introduce vorticity in the

fashion required.
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The simplest approach is to use the particles’ vorticity magnitude only (ignor-

ing direction) to define a spatially varying confinement strength ε, transferring the

particles values of this parameter to the grid with the distribution kernel mentioned

above. This allows vorticity confinement to be activated independent of the existing

grid based vorticity, but ignores the directional component of the particle’s vorticity.

A promising technique is to form an analytic confinement force independently for

each particle. The distribution kernel, ξp(x − xp), for a particle together with the

particle vorticity, ωp, defines an analytic vorticity ω̃p(x) = ξp(x − xp)ωp. Choosing

a kernel that is rotationally symmetric and strictly decreasing with distance from the

particle center implies that N p(x) = (xp − x)/‖xp − x‖, and the confinement force

is then F p(x) = εp(N p × ω̃p). We can sum the contributions from all the particles

to obtain a grid based force field for use in Equation 3.1. This technique was used

to generate Figures 3.3, 3.4 and 3.5. In addition, one can interpolate the grid based

vorticity to the particle location and reduce the strength of the particle based force

as the grid based vorticity approaches the particle’s vorticity. Of course, in practice

the grid is typically too coarse for the grid vorticity to match the vorticity of all

the particles. Alternatively, one could transfer the magnitude and direction of the

particle’s vorticity to the grid, and compare this to the existing grid based vorticity.

The difference between these can be used to calculate a vorticity confinement force

(replacing vorticity with this difference in the formulas). However, we have not found

these last two options to be necessary.

Finally, we note that vorticity confinement is rather robust for reasonably well

chosen parameter values, but can destroy a simulation or cause instabilities if ε is

set too high as shown in Figure 3.2. Since we use a vorticity confinement style force

to drive the grid based vorticity towards the particle based vorticity, similar issues

arise in our method. However, as in standard vorticity confinement, a large range of

parameter values seem to perform quite nicely. Although one could limit our vorticity

confinement forces as the grid based vorticity approaches the particle based vorticity

(as mentioned above), we have not found this necessary.
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3.5 Examples

We implemented our method on both uniform and octree grids and generated a variety

of examples demonstrating its versatility. The extra computational cost incurred by

using vortex particles was negligible (less than 5%). Most of our examples used a

clamped Gaussian kernel

ξp(x− xp) = e−‖x−xp‖2/2r2

/(r3(2π)3/2)

when ‖x − xp‖ ≤ r, and 0 otherwise. In Figure 3.4, we seeded about 6000 particles

during an initial divergence driven expansion lasting .5 seconds. Particles are seeded

with random position while directions are placed tangent to the cylinder centered at

the source region’s midpoint oriented upward. We use a radius extending about 4

grid cells (for octrees we compute the radius using the smallest cells) and a particle

vorticity of 2 × 10−3. Figure 3.3 demonstrates that our technique also works well

for liquids. Particles are seeded randomly at the inflow with vorticity pointing up or

down to create toroidal eddies characteristic of rivers. To create larger vortices the

kernel radius is increased to cover 40 grid cells and the particle vorticity magnitude

is 1× 10−2 for the top figure and 5× 10−2 for the bottom figure. Figure 3.5 depicts

a stream illustrating that we can handle complex geometries. The parameters are

similar, except that particles that enter geometry are deleted. Also, we used a 4 grid

cell particle radius in order to model a larger scale scene. The technique was also used

at Industrial Light + Magic for several feature films including “Star Wars Episode

III: Revenge of the Sith”, “Poseidon”, and many others. About 200 particles were

used with a radius of about 3 grid cells in a 100× 100× 100 simulation, and we used

a tent kernel.

3.6 Conclusion

In summary, our method could be viewed as a traditional grid based Navier-Stokes

solver with special forces added to obtain interesting fluid flows. These forces are
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obtained via a particle based approach to the vorticity formulation of the Navier-

Stokes equations. Specifically, the requirements of our method are to (1) use vorticity

carrying particles to preserve vorticity concentrations, and (2) target the grid based

vorticity towards the particle based vorticity using a vorticity conserving body force,

based on the successful vorticity confinement approach.
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Figure 3.3: Vortex particles seeded at the inflow (left) create turbulence in water flow-
ing from left to right. The top and bottom show lower and higher amounts of particle
induced vorticity. (320×128×320 effective resolution octree grid, approximately 600
vortex particles)

Figure 3.4: Time evolution of a smoke explosion enhanced with vortex particles seeded
as the smoke undergoes expansion at the source. (180 × 260 × 180 uniform grid,
approximately 6000 vortex particles)
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Figure 3.5: Vortex particles interact with complex geometry creating a turbulent
water stream. (272 × 112 × 272 effective resolution octree grid, approximately 800
vortex particles)



Chapter 4

Coupling Thin Shells to Fluids

4.1 Introduction

Visual effects are typically used in entertainment for storytelling, so these effects need

to interact with a particular environment and objects. This interaction is responsible

for much of the compelling behavior of simulations. An artist typically creates these

models and animations by hand, and they must be integrated as boundary conditions

for the fluid simulation. This is made difficult by the fact that solids and fluids use

different representations. Fluids such as water (e.g. [50, 40]) are simulated using

Eulerian techniques (those described in previous chapters) while solid objects such as

cloth, rigid bodies, or animations are specified using Lagrangian methods (discussed

in later future chapters). If the Lagrangian object is thick, it is typically easy to

rasterize it on a grid and enforce boundary conditions in an Eulerian sense, but for

thin objects like rigid or deformable shells, direct rasterization is more difficult.

Very little research has been carried out on algorithms that couple infinitesimally

thin Lagrangian-based solids to Eulerian-based fluids, and few computational strate-

gies exist. Moreover, they are mostly focused on single phase fluids, whereas our

main interest is fluids with interfaces such as between water and air. Probably the

most common strategy for single phase fluids is based on the immersed boundary

method of [116, 117], and [183] used this method to calculate the motion of a thin

flexible filament (a curve) in two spatial dimensions. A thin solid object feels and

46
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reacts to fluid forces as molecules collide against it, and the net force on the thin

solid comes directly from the pressure differential across it. The immersed boundary

method cannot handle this pressure jump and instead forces the pressure to be con-

tinuous across the thin solid, and thus (nonexistent) pressure jumps cannot be used

to apply forces to the solid. Instead, they simply set the solid velocity to be equal to

the velocity of the surrounding fluid, and use ad hoc methods to provide resistance to

the fluid motion. For example, [183] smeared out the filament over a number of grid

cells converting it into a higher density fluid, and added artificial forces to the right

hand side of the Navier-Stokes equations. Similar to penalty methods for rigid body

contact constraints, these forces can only coerce a desired fluid reaction and often

require small time steps for stability and accuracy. [82] pointed out that smeared out

pressures profiles (such as those used in the immersed boundary method) can cause

parasitic currents when used to make the velocity divergence free (see also [53]). A key

to our method is the replacement of penalty forces with analytic constraints on the

fluid velocity forcing it to flow as dictated by the velocity of the solid. Heuristically

similar to the analytic methods of [4] for solving contact phenomena in rigid bod-

ies, we replace the stiff inaccurate penalty forces of the immersed boundary method

with a robust constraint that requires the solution of a linear system of equations

greatly reducing the errors. Conveniently, we are already solving a linear system for

the pressure, and it is readily modified to include the no flow constraint exactly as

opposed to the only approximate enforcement via penalty forces. This is essentially

a sharp interface approach similar in spirit to the immersed interface method (see

e.g. [91]). However, we note that neither the immersed interface method nor the

immersed boundary method has been used to solve solid/fluid coupling problems in

the presence of liquid interfaces or thin films as we do here.

In this chapter we consider the problem of one-way coupling of a time varying

thin object interacting with a fluid. We use robust ray tracing to define boundary

conditions on the fly that respect the arbitrarily thin Lagrangian object geometry.

One way coupling implies that the fluid will feel the effects of the solid, but the solid

will not be affected in any way by the pressures from the fluid. This simplifying
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assumption is common, especially in visual effects where an artist usually hand an-

imates an object like a boat for storytelling purposes, and the water is simulated

around that animation. Though we do not discuss two way coupling, the techniques

presented in this chapter are used as the basis for two-way coupling approaches such

as [128]. Additionally, in [61], we introduced these one-way coupling approaches and

also presented a split two-way coupling approach.

4.2 Previous Work

We use the simple pressure/velocity fluid simulation techniques discussed in the pre-

vious chapters together with semi-Lagrangian advection. Though these examples do

not use the hybrid vortex particle solver or the MacCormack advection scheme, there

is no reason they could not. For simulating water, we use the hybrid particle and

implicit surface approach of [50], which led to the particle level set method of [40].

Surface tension [41, 71, 26, 96], viscoelastic fluids [54], control [100, 102], explosions

[46], fire [89, 109], etc. could be used with this method, though their use of data

quantities would have to be made robust as described in Section 4.3.

Various authors have used simplified fluid dynamics to blow around solid objects,

e.g. [178, 176], and many have used simplified wind models to simulate flags flapping

in the wind, e.g. [93]. [65] used gridless SPH techniques to couple air flows to hair

simulation, but since hair is one-dimensional it does not restrict or contain the fluid as

cloth does. SPH models for water were considered in [122, 107], and methods of this

type were coupled to deformable solids in [108] using virtual boundary particles. In

fact, [88] coupled an SPH model for water to thin deformable cloth pointing out that

particle based fluid methods can be coupled without leaking using robust point face

collisions, although their method will leak if the time step is not chosen sufficiently

(sometimes severely) small. Of course, this can be alleviated with a more robust

point face collision method as in [15]. The drawback of using SPH methods is that

it is difficult to obtain the smooth liquid surfaces characteristic of level set methods,

and recently [19] proposed a method for the two way coupling of rigid bodies to

level set based fluid simulations. They first rasterize the rigid body velocity onto the
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grid, and then solve the fluid equations everywhere treating the rasterized rigid body

velocities as if they were fluid (this was also done in [50] for modeling slip boundary

conditions). They then modify the velocities in the rigid body region to account for

collisions and buoyancy before averaging them to a valid rigid body velocity with a

constant translational and rotational component. The authors point out that their

method leaks if the objects are too thin (whereas we consider arbitrarily thin objects),

and deformable materials were not considered.

We provide examples of water and smoke interacting with thin rigid bodies and

cloth. The novelty of the method is in the treatment of the fluid and the interaction

between the fluid and the solid, not in the simulation of the solids themselves. Thus,

we use the basic cloth model from [16] including their bending formulation (see also

[58]), and the self-collision algorithm of [15]. We note that there are many other

interesting strategies for cloth including the dynamics model proposed in [6], the

bending model proposed in [23], and the self-interference untangling strategy of [7].

We use a basic method for rigid body simulation, which doesn’t need to be any

more sophisticated than that in [67, 106] for our purposes. The interested reader is

also referred to [5, 60] and the references therein for contact and collision handling

techniques.

4.3 Robust One-Sided Interpolation of Data

Our goal is to completely prevent the leaking of smoke and water across thin rigid

and deformable solids represented by moving triangles. To do this, we use visibility

and occlusion to determine which point combinations can be used to produce inter-

polations, derivatives, etc. of variables such as φ, ρ and u. This is accomplished via

robust ray casting against thickened triangle wedges as in [15], see Figure 4.1 (left).

From the perspective of any reference point in space, the world is broken up into three

regions: visible points, occluded points, and points inside some triangle wedge of the

object. This partitioning is accomplished by casting a ray from the reference point

to the point in question as shown in Figure 4.1 (right). The triangle wedges guar-

antee that only visible points are labeled visible, but may incorrectly mislabel some
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reference point

visible point

occluded point

inside point

ε /2ε

Figure 4.1: We intersect with a triangle wedge that is formed by extending the edges
and face in normal directions by ε/2 (left). Given a reference point, another point
can be classified as visible, inside an object, or occluded by the result of a ray cast
(right).

visible points as being inside the object or even occluded near boundaries leading

to a fuzzy interpretation of the object that is robust against roundoff errors. Given

a reference point, if one rules out all occluded and inside points when constructing

stencils for interpolation, differentiation, etc. at this reference point, then valid one

sided approximations are guaranteed.

When a thin solid moves, a point originally on one side of the object surface may

be swept over by the surface and end up on the other side of it. In this case, the

values contained by that point are invalidated for all subsequent interpolation, since

it represents information from the other side of the object. Detecting such points is

crucial to preventing leaks and is accomplished on a per-triangle basis. Each time

step, we move the triangle nodes with linear trajectories, and consider a point invalid

if it intersects the triangle itself (at the center of the wedge) during the time step.

Checking this amounts to solving a cubic equation as in [15]. For robustness, we

additionally consider a point invalid if it is either inside the triangle wedge at the

beginning or at the end of a time step. Any point that does not start or stop inside

a triangle wedge will robustly register a collision with an interior triangle if it crosses

from one side of the object to the other. In the case of octrees, refinement leads

to new point values that are also marked as invalid. Coarsening only involves the

removal of nodes, and thus nothing special need be done.
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We provide valid values for invalid nodes using a Gauss-Jacobi iterative scheme

to propagate information. Each iteration, every invalid node is assigned the average

of its valid visible one ring neighbor values and marked valid. This technique of

averaging uncovered points is similar to the blending methods used by others, see

e.g. [8]. Complicated object geometry or folding may produce nodes that are still

invalid after all iterations are complete. These nodes have no valid visible neighbors,

and thus we again iterate in a Gauss-Jacobi fashion except this time using specially

chosen values when visibility rays intersect an object. For example, we use the object

velocity, a zero density, an ambient or object temperature, the positive distance to

the object, etc.

A standard axis-aligned box hierarchy is used for the triangulated surface acceler-

ating intersection tests, etc. Moreover, for each triangle, a slightly enlarged bounding

box is used to label all the voxels from the fluid simulation that are in close proximity

to the surface thus possibly requiring special treatment.

4.4 Fluid Simulation

We use the pressure/velocity fluid solver as outlined in Section 3.2, again ignoring

the viscosity term. While we have implemented the algorithm on both uniform and

octree grids [96], we gear the exposition toward uniform grids.

4.4.1 Computing the Intermediate Velocity

To update the velocity field we use semi-Lagrangian advection as described in Sec-

tion 2.3. To do an update of a MAC grid face, we must first obtain a full velocity

vector u by averaging the other two components to the face. However, the averaging

operator must consider that the path to a value from which we wish to average may

be blocked by a solid. Thus, we ray trace from the face location to the locations we

wish to average from and if we hit an object, we average with the object velocity at

the intersection point instead. Following this, we have a full velocity vector, which we

can use with the semi-Lagrangian method. We trace a semi-Lagrangian ray from x
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to x−∆tu, for each velocity face, intersecting it with a triangle wedge that is double

the usual size (i.e. using ε′ = 2ε in Figure 4.1 (left)). This guarantees that the base

interpolation point is visible to the point we are updating, and that the subsequent 8

rays we send out from this base interpolation point can accurately predict visibility

(through a 2 ray path) for the interpolation stencil. If any of these 8 secondary rays

intersect the object, we use the local object velocity for that term in the trilinear

interpolation formula. After computing the intermediate velocity field, the object is

moved to its new location and we label all nodes colliding with the moving object as

invalid. Finally, these nodes are given valid values as described in Section 4.3.

For water, gravity is simply added to each velocity field in the usual manner. For

smoke, we add source terms that depend on the smoke’s density ρ and the fluid’s

temperature T , i.e. f = −αρz + β(T − Ta)z where z is the upward direction, α and

β are tunable parameters, and Ta is the ambient temperature. The smoke’s density

and the fluid’s temperature are treated (advection, visibility, cross over, invalid, etc.)

together with the velocity as explained above, using a zero density and Ta for visibility

rays that intersect the object.

To compute the vorticity confinement force, we calculate the curl of the velocity

field ω = ∇×u at the cell centers, replacing any velocity vectors that are not visible.

Then the confinement force is computed in the usual way (see Section 3.2.1) at the

cell centers and averaged back to the faces (again using robust averaging).

4.4.2 Solving for the Pressure

The intermediate face velocity is made divergence free via

u = u∗ −∆t∇p. (4.1)

where the cell centered pressure values are calculated by solving a Poisson equation

of the form

∇2p = ∇ · u∗/∆t. (4.2)



CHAPTER 4. COUPLING THIN SHELLS TO FLUIDS 53

This equation is solved by assembling a symmetric system of linear equations, one for

each MAC grid cell (that contains fluid) with the pressure defined at the cell center. In

the case of water, we set Dirichlet p = 1 boundary conditions in air cells. A Neumann

boundary condition implies that the pressure derivative at a cell face is zero, and thus

the intermediate velocity is not modified as can be seen in Equation 4.1.

We found that thin films of water can quickly compress and lose mass against

thin solid objects if one is not careful in how the boundary conditions are handled.

In fact, correctly handling the boundary conditions is of utmost importance for mass

conservation in general, as discrepancies between the fluid and object velocity cause

fluid to flow into or out of an object losing or gaining mass respectively. Our method

for handling this is one of the key observations and contributions of this chapter. First,

we note that the velocity we compute for the fluid during the divergence free projection

will be used in the next time step, and thus we need to make this commensurate with

what the solid will do in the next time step. In order to do this, we calculate the size

of the next fluid time step, evolve the solid object forward in time by the size of this

time step allowing the solid to take as many substeps as it needs to remain accurate

and stable, calculate an effective velocity for each node in the solid by dividing its

positional change by the size of the next fluid time step, and finally rewind the solid to

its current position at the end of the current fluid time step. Now the effective velocity

represents exactly what the solid will do in the next time step, and we use Neumann

boundary conditions to force the fluid to move in exactly this manner allowing for

excellent resolution of thin films of water colliding against cloth and thin shells. We

cast rays from a cell center to the six neighboring cell centers to see if an object cuts

through the line segment connecting the pressures as shown in Figure 4.2. And if so,

we set a Neumann boundary condition at the cell face and set the constrained velocity

there equal to the appropriate component of the effective velocity of the object. Then

the divergence is computed in the standard fashion, Equation 4.2 is solved, and the

results are used in Equation 4.1.

A rather common difficulty with simulating highly deformable thin objects such

as cloth in a fluid flow is that the cloth folds over on itself and pockets of fluid

get separated from the flow. These are simple to identify by performing a flood
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fill algorithm over the fluid cell centers using the Neumann and Dirichlet conditions

as the fill boundaries. If any region is surrounded entirely by Neumann boundary

conditions, then the coefficient matrix assembled using Equation 4.2 has a null space

corresponding to the vector of all 1’s and is not invertible. However, there is a

version of the conjugate gradient algorithm that can be applied to this matrix, if we

first enforce the compatibility condition [119]. This is enforced independently in each

region that has a null space using the area and velocity of the faces on the boundary to

calculate the net flow per unit area into or out of the region. Then for each boundary

face, we use this and the face area to obtain new temporary velocities that enforce

no net flow across the region boundary. Finally, we solve for the pressure and make

this region divergence free.

4.4.3 Water

We simulate water using the particle level set method of [40] with φ ≤ 0 denoting

water and φ > 0 denoting air. Since we only solve for velocity values in the water,

each time step we extrapolate the nodal velocities across the interface into a 3-5 grid

cell band to obtain velocity boundary conditions. To do this, we first order all the

grid cells in the band based on their values of φ, noting that this ordering is only valid

after reinitializing φ to be a signed distance function (see Section 4.4.3). Then we

solve the vector equation ∇φ ·∇u = 0 for the nodes in φ increasing order. To prevent

velocities from leaking across objects, we rule out neighbor values that are not visible.

It is possible that some points have no visible neighbors, and we temporarily label

p(i,j)

Figure 4.2: Neumann boundary conditions (denoted in bold red) are enforced at a
cell face if the ray between two adjacent cell centers (where pressures are defined)
intersects an object.



CHAPTER 4. COUPLING THIN SHELLS TO FLUIDS 55

these points invalid. After extrapolation is complete, all invalid points are given valid

values as explained in Section 4.3.

Level Set Method

[39] showed that the particle level set method relies primarily on the particles for

accuracy whereas the role of the level set is to provide connectivity and smoothness.

Thus, they showed that high order accurate level set advection could be replaced

with a semi-Lagrangian characteristic based scheme without adversely affecting the

accuracy. The level set is defined at the grid nodes, and thus we trace the same semi-

Lagrangian rays as for velocity advection. When gathering the 8 values for trilinear

interpolation, we replace nodes that are not visible with values averaged from a subset

of the other 7 grid nodes of the cell whenever possible. Each point that needs to be

redefined first looks to see if any of its one ring connected neighbors (in that 8 grid

node cell) are visible to the base interpolation point. If so, they are averaged to

obtain a new value for the node in question. Otherwise, we check and average the

three 2 ring neighbors, or if that fails we consider the single 3 ring neighbor. If the

process fails, there are no visible nodes in the cell and the point in question cannot

be updated. We mark this node’s φ value invalid and fix it in a postprocess (see

Section 4.3).

The level set is maintained to be a signed distance function using the fast marching

method (see e.g. [112]). Typically, the nodes adjacent to the water interface are found

by checking for sign changes between neighbors in the Cartesian grid directions (or

along edges in the octree grid). We add to this list any node with φ ≤ 0 that has a

neighbor that is not visible, and subtract from this list any node with φ > 0 that does

not contain a visible neighbor with φ ≤ 0. These last two adjustments ensure that an

interface exists up against the solid object, and that water does not have influence

across the thin triangulated surface. Typically, each node in this list is given an initial

φ value by considering how far it is from the interface in each of the Cartesian grid

directions that have a sign change. However, if the current node has φ > 0, we ignore

directions where the neighbor is not visible. And if φ ≤ 0, we use the minimum

between the distance to the solid and |φ| in directions that are not visible. This last
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adjustment prevents water from incorrectly sticking to objects. After initialization,

we employ the fast marching method in the usual fashion ruling out neighbors that are

not visible when updating a given point (similar to extrapolation of velocity values).

Particle Level Set Method

Negative particles need to collide with solid objects to prevent water from leaking

through those objects, and we collide them using a collision distance that is preas-

signed to each particle by drawing a random number between .1∆x to ∆x. To collide

a particle with an object, we find the closest point on the object and compute the

object normal at that location. We would like the particle to be at least its collision

distance away from the object, and if it is not we move it in the normal direction by

the required amount. If the particle intersects any object during this move we either

delete it or just don’t move it. We found that properly colliding negative particles

against objects significantly improves the ability to properly resolve thin films of fluid

against an object.

The particle velocity is determined by casting rays to the 8 neighboring nodal

velocities in the same fashion as discussed above for the base of a semi-Lagrangian

ray (see Section 4.4.1). For negative particles that are closer than their collision

distance to the object, we clamp the normal component of their velocity to be at

least that of the object so that they do not get any closer to it. [39] showed that

second order accurate particle evolution was quite important, especially when using

the semi-Lagrangian method for level set advection. To achieve this, we first evolve

the particles forward in time robustly colliding against the (stationary) object. Then

we interpolate a new velocity at this location and average it with the original velocity

to get a second order accurate velocity, before moving the particle back to its original

location. For negative particles, we clamp the normal component of this averaged

velocity if they are either within their collision distance to the object or they collided

with the object when they were originally evolved.

Before moving each particle with its second order accurate velocity, we check for

intersections between the particle center and the moving object. We delete positive

particles that intersect the object, but attempt to adjust negative particles using the
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triangle they intersect. With the particle and triangle in their initial position, we

record which side of the triangle the particle is on using the triangle normal. Then

with the particle and triangle in their final position, we move the particle normal to

the triangle so that it is on the same side as before and offset by its collision distance

in the normal direction. Finally, we check this new particle path against the moving

object and delete the particle if it still intersects the object. After advection, all

negative particles are adjusted to be at least their collision distance away from the

object as discussed above.

After updating both the level set and the particles, we modify the level set values

using the particles. This is done in a collision aware fashion using only visible particles.

The final step in the particle level set method is to adjust the radius of the particles

based on the values of φ, and possibly delete particles that have escaped too far from

the interface. This is accomplished by evaluating φ at the center of the particle in

the same fashion as is done at the base of a semi-Lagrangian ray. Periodically, every

10-20 frames, particles are reseeded to get a better representation of the interface.

Initially, this is performed disregarding the object altogether (for efficiency). Then

as a postprocess, we evaluate φ at the center of the particle and delete particles with

the wrong sign.

4.5 Cloth and Thin Shell Simulation

The novelty of our method lies both in the treatment of the fluid and in the interaction

between the fluid and the solid, not in the simulation of the solids themselves. All

that is required is positions of the nodes of the triangulated surface at discrete time

intervals, and from this we can calculate a velocity for each point assuming that it

is piecewise constant between fluid time steps. When velocities within a triangle are

required, we interpolate using the barycentric coordinates. For rigid body simulation,

we use the method of [60], although our examples require no technology beyond that

in [67, 106]. For cloth, we use the basic cloth model from [16] including their bending

formulation, and the self-collision algorithm of [15].
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4.6 Rendering

To make sure renderings do not exhibit visual leaking artifacts, robust one-sided

interpolation of data is also needed. Water is typically rendered using implicit surface

ray tracing techniques, and if non-robust interpolation is used, fluid will appear to

leak through the objects. Fortunately, the techniques outlined in Section 4.3, work

well for rendering as well. We simply use the typical root solving approach for ray

tracing implicits, but we use the robust interpolation scheme to evaluate the φ implicit

function. Since we use the same acceleration structures as we do for the simulation,

the additional rays that used for robust interpolation need not be sent if the evaluation

point is far from a solid. Moreover, this effectively removes visual artifacts caused

by smoke and water showing through to the other side of objects, and air pockets

showing through to the smoke and water side.

Subdivision surfaces are typically used to render cloth or even coarse rigid bodies,

however, these subdivision schemes may cause visual artifacts if the subdivided points

of the solid cross fluid grid points, even with robust interpolation. A similar prob-

lem occurs if a cloth simulation is rendered using smooth (loop) subdivision, where

the smooth subdivision is self interpenetrating even though the coarse simulation

was robustly collision-free. [15] presented a collision-aware subdivision scheme that

solves this problem by viewing subdivision as a pseudo-dynamics problem, where a

linear (non-smooth planar subdivision) is time evolved to the desired smooth sub-

division, while processing collisions (see Figure 4.3). This is possible because both

loop and linear subdivision share the same topology and mesh, making particular

Figure 4.3: Depiction of various subdivision approaches. Notice how the Bridson
approach uses a pseudo-velocity modification procedure to create a collision-free sub-
division (bottom).
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particle positions the only difference between the schemes. Thus, we obtain an effec-

tively smoothness/collision-free subdivision trade off by modulating between the two

possible positions.

For fluids, we can perform a similar collision-aware subdivision scheme using Brid-

son’s technique. We could use his algorithm directly and treat all of the grid points

as points that the cloth is not allowed to cross during the evolution from the linear

subdivision state to the loop subdivision state. This would work, but it could unnat-

urally constrict the cloth during subdivision, especially on a very fine grid. Instead,

we can allow the cloth to cross fluid grid points, but detect when this happens and

invalidate the data that was there, just like the crossover that can occur during a

simulation. Revalidation is performed after subdivision using averaging just as in the

simulation. See Figure 4.4.

4.7 Examples

We were able to simulate computational grids with effective resolutions as large as

256×256×192 for the fluid and as many as 90k triangles for the rigid and deforming

bodies using a 3 GHz Pentium 4. The computational cost ranged from 5 to 20 minutes

per frame, and thus the longest examples took a couple of days.

First, consider examples showing the one-way coupling of this method in isolation.

Figure 4.5 depicts a kinematically controlled cup dipped, raised, and poured, demon-

strating that our technique can model liquid behavior on both sides of a triangulated

surface independently. Figure 4.6 shows similar behavior for more complex geometry.

Figure 4.4: Depiction of our fluid-aware subdivision approach.
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Figure 4.5: A thin rigid kinematically controlled cup is filled with water, and then
poured out (160× 192× 160 effective resolution octree).

As stated before, [61] also showed two-way coupling examples using our technique.

For example, Figure 4.7 depicts a smoke stream flowing toward a suspended cloth

curtain, and the two-way coupling generates interesting wrinkles and folds as well as

smoke motion. Two-way coupling is possible for rigid shells as well, and Figure 4.8

shows a fully dynamic simulation of a boat floating until a stream of water sinks it.

Figure 4.9 shows a stream of water flowing over a piece of cloth demonstrating full

two-way coupling of cloth and water. Note specifically that the cloth supports the

water (without leaks) and produces highly detailed thin water sheets flowing off the

sides. Figure 4.10 depicts a stream of water flowing onto a cloth curtain causing it to

deform.

4.8 Conclusions

We have presented a new computational algorithm for the coupling of incompressible

flows to thin objects represented by Lagrangian triangulated surfaces. Examples were

presented to demonstrate that this algorithm works well for one phase fluids such as

smoke and for fluids with interfaces such as water. These examples demonstrated

that the method robustly prevents leaking of material across the thin boundaries.
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Figure 4.6: A rigid kinematically controlled “Buddha cup” dipped, filled and poured
out (1923 effective resolution octree, 60K triangles in the rigid cup).

Figure 4.7: Two way coupled cloth and smoke (210 × 140 × 140 uniform grid, 30K
triangles in the cloth).
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Figure 4.8: A full dynamic simulation of a rigid body shell two way coupled with
water. The boat is heavier than the water, but retains buoyancy due to Archimedes’
principle (effectively replacing displaced water with the air in its hull). Filling its hull
with water causes it to sink, until it dynamically collides with the ground. (148 ×
148× 111 uniform grid, 2.5K triangles in the dynamically simulated rigid boat)

Figure 4.9: Two way coupled water flows over cloth (suspended at four corners),
demonstrating that thin objects can support a sheet of water without leaks (2003

effective resolution octree grid, 30K triangles in the cloth).
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Figure 4.10: Water and cloth interacting with full two way coupling (256× 256× 192
effective resolution octree, 30K triangles in the cloth).



Chapter 5

Solid Simulation

5.1 Introduction

In this chapter we move from fluid simulation to solid simulation, which can be

used to simulate hair, flesh, and cloth for synthetic characters in visual effects and

games. Compared to fluids, solid simulation typically seeks to resolve a particular

geometry. This is because, solids are elastic so that they target some rest shape.

Thus, Lagrangian techniques are popular with tetrahedral meshes for flesh, a triangle

meshes for cloth, and a segment meshes for hair.

5.2 Meshes

The spatial discretization of a geometry into a particular mesh is very important as

it affects what degrees of freedom are possible. For sheets of cloth, we typically use

a Herring-Bone mesh to triangulate a quad grid so that we do not bias the bending

directions. This is important, as the edges of the triangles are the only places where

the mesh can bend. The quality of the mesh has a direct impact on simulation as we

will see. Extreme angles, tiny elements, etc. all slow down the simulation by creating

bad conditioning and stringent time step restrictions.

To avoid these problems we prefer uniform meshes if possible. If a particular

surface or volume geometry needs to be meshed, we use [104], which starts with

64
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a BCC lattice (uniform or adaptive) and moves boundary particles to conform to

the input surface via either dynamics or optimization. Irregular Delaunay meshes

are another popular choice, but they have more difficulty obtaining well-conditioned

meshes. For hair simulation, which we consider in Chapter 7 we show how to construct

special meshes for hair.

5.3 Materials

5.3.1 Constitutive Models

Given a mesh and a desired material we wish to simulate, we can create a constitutive

model, a mapping from the strain (deformation) of a material to its stress. For

simplicity, we will consider this intuitively in one spatial dimension. Suppose a piece

of material with initial length l0 is stretched to l. Then the strain is

ε =
l − l0

l0
.

The quantity is negative if the length is compressed, positive if stretched, and zero if

there is no deformation. We then have a Young’s modulus E which can be used to

map to a restoring force

F = Eε = E

(
l

l0
− 1

)
.

E as a constant is a linear stress-strain relationship–a constitutive model. Constitu-

tive models, stress, strain can be generalized to three dimensions, giving the quantities

used for finite element methods. Separating the constitutive model from the computa-

tion of a per particle force is quite useful. For example, see [148] for an example of an

anisotropic constitutive model that was used for muscle simulation. Nevertheless, in

this dissertation we do not use finite elements, electing instead to use springs, because

springs tend to be several times faster to compute and tend to be more robust.
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5.3.2 Linear Springs

The notion of a one-dimensional spring is easily extended to higher spatial dimensions,

by mappings its action to a vector direction. In particular, the force becomes

F elastic = k

(
‖x2 − x1‖

l0
− 1

)
d̂ (5.1)

where x{1,2} are the spatial positions of the spring end points at time n, l0 is the

rest length and d̂ = (x2 − x1)/‖x2 − x1‖. This defines an elastic force that returns

a spring to its rest length, however, one also typically requires damping

F damp = d(v2 − v1)
T d̂d̂.

Notice here that we only apply damping in the direction of the spring which avoids

much of the floating artifacts caused by a non-directional damping force

F ether = d(v2 − v1).

We can place these simple linear stress/strain springs on every edge of a triangle

mesh for cloth, every edge of a tetrahedron for flesh, or every edge of a segment for

hair. Obviously, this does not model any particular material, but nevertheless, it is

simple to implement and widely used. One can also extend this definition to provide

a piecewise linear stress/strain relationship. This is useful for modeling materials

that stretch easily to a point and then become very stiff. One can also differentiate

between the stiffness for compression and stretching. The special case of two linear

pieces is called a biphasic spring.

5.3.3 Bending

The biggest drawback to the spring based approach is that forces can only be applied

in a few discrete directions. Thus, users typically augment their models with addi-

tional springs that target other directions. Obtaining the correct bending behavior on

cloth is a significant research area, and has been addressed by [23, 16, 58, 10, 155, 165].
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Figure 5.1: Constitutive model of cloth consisting of both springs on triangle edges
and springs across shared edge of triangle pairs.

The simplest bending approach is to add another linear spring between the two un-

shared vertices of a triangle pair that shares an edge. (see Figure 5.1). This works

surprisingly well, but has some limitations. In particular, the edge springs are artifi-

cially strengthened if the two triangles are planar. Also, if the rest configuration of the

two triangles is not coplanar, and the triangle deforms to to be flat, then the bending

spring (which is in-plane) cannot restore the appropriate rest configuration bending

angle. One approach to correcting this problem is creating a force that preserves a

dihedral angle between the two faces [16, 58].

5.3.4 Tetrahedral Altitude Springs

A major difficulty in volumetric simulations (both mass-spring and finite volume) is

that a tetrahedron may collapse to zero volume or even invert to negative volume.

In traditional finite elements, this inversion causes the simulation to fail (which can

be remedied by [77]). In the case of a mass spring model with springs on each of

the six tetrahedron edges, the tetrahedron can collapse to a plane and never recover

because all spring force directions are in that plane. If the tetrahedron is inverted,

the springs have an artificial rest state where the tetrahedron has the same absolute

value of volume as the rest shape.

To prevent these problems, [104] places an altitude spring between each particle of

the tetrahedron and a virtual node projected onto the plane of the opposite face (see

Figure 5.2 (a) and (b)). Equal and opposite forces are applied to both the particle

and the virtual node where the virtual node distributes its force barycentrically to
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Figure 5.2: Varying examples of point/face and edge/edge altitude springs are shown.
Examples (a) and (d) represent ideal cases for the two types of altitude springs,
whereas (b) and (e) show altitude springs of each type with negative barycentric
weights. (c) shows all point/face altitude springs having negative weights, but there
is still one edge/edge altitude spring that has non-negative weights. (f) shows all
edge/edge altitude springs having negative weights, but one point/face altitude spring
has non-negative weights.
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the particles of the face. Unfortunately, altitude springs have problems in the case

of highly stretched or degenerate tetrahedra as the virtual node can be outside the

triangle. In this case, barycentric weights can be negative resulting in arbitrarily large

forces on particles of the triangle (i.e. large forces on non-negative weights balance

out large forces on negative weights). One might try to correct this by using only

point/face pairs with non-negative barycentric weights, but in many configurations,

no such altitude springs exist (Figure 5.2(c)).

The key to solving this problem is noting that in the point/face degenerate case two

edges are crossing, which yields a non-degenerate direction for restoring the positive

volume of the tetrahedron. In particular, the edge/edge altitude spring direction

is mutually orthogonal to the two lines containing the edges (Figure 5.2(d)). Each

spring endpoint is embedded on one of the lines using barycentric weights. Here, the

barycentric weights can also be negative if the virtual nodes are not on the segment

(Figure 5.2(e)) in which case the edge/edge altitude spring can also produce arbitrarily

large forces. Fortunately, we have the following result about tetrahedra.

Theorem 1 For any non-zero volume tetrahedron, the edge/edge or point/face

spring that currently has the least length is guaranteed to have all non-negative barycen-

tric weights, preventing unbounded forces.

We first show that for a given tetrahedron with at least one positive area triangle,

there always exists a point/face or edge/edge pair that has non-negative weights.

Consider every non-zero area triangle 4ABC and project the fourth point D into its

plane as P (D). Then there are three cases: (1) P (D) is inside 4ABC, meaning the

point/face altitude spring has non-negative weights. (2) P (D) is outside 4ABC and

the convex hull consists of 4P (D)AB (relabelling without loss of generality). Then

the projection of 4P (D)AB is inside 4DAB so P (C) is inside 4DAB making that

a point/face altitude with non-negative weights. (3) P (D) is outside 4ABC and the

convex hull is a quadrilateral so that segments intersect yielding a edge/edge pair

with non-negative weights.

Next, the minimum altitude has non-negative weights because any invalid edge-

edge or point/face pair is not the minimum altitude. Suppose an invalid point/face

pair, then if the points projection on the face yields a quadrilateral, then a smaller
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distance must exist between the resulting edge/edge pair because the projected point

is the highest distance from the plane by definition and is incident on one of the

crossing edges. A similar argument occurs if the point face is invalid with the convex

hull being a triangle. In the case where the edge/edge pair is invalid, then if it is

coplanar, it is tied in altitude with everything. Otherwise, the length can be reduced

by choosing a different pair. �

Thus, when performing a simulation of a tetrahedron, we can choose to use the

single edge/edge or point/face spring that currently has the least length. Point/face

altitude springs compute length as l = 6V/‖u×v‖ where u and v are the vectors of the

base triangle and V is the signed volume of the tetrahedron, while edge/edge altitude

springs use the same formula but with u and v replaced by the edge vectors. There

are seven potential springs, 4 point/face and 3 edge/edge. A valid altitude spring

exists unless all particles become colinear, i.e. every tetrahedron face is degenerate

and every opposing edge is parallel. Thus to robustly select which spring to use,

we find the largest ‖u × v‖ of any possible edge/edge or point/face spring. If ‖u‖
or ‖v‖ is too small, then an edge has collapsed, and it will be restored by normal

edge springs so no altitude spring is used. If sin2 θ = ‖u × v‖2/(‖u‖2‖v‖2) is too

small, then particles in the tetrahedron are colinear, and we use an edge/edge spring

with a direction orthogonal to the line. Otherwise, the altitude spring is valid and

guaranteed to have non-negative barycentric weights. We illustrate the efficacy of

our altitude springs in Figure 5.3(a) where a tetrahedral torus model collapses to

zero height and then the stiffness is increased on both the normal edge springs and

our altitude springs causing the model to recover (similar to the test in [77]).

We also briefly reconsider the simple bending model for cloth or shells, where

linear springs are placed on the triangle edges while bending springs connect opposite

vertices across an edge shared by two triangles. If two triangles become coplanar this

spring is in-plane and cannot recover the rest curvature, so an axial bending spring

can be added that connects a virtual node on the shared edge to a virtual node

on the bending spring (Figure 5.4). However, this is exactly an edge/edge altitude

spring with the two triangles and the bending spring representing a tetrahedron.

Thus instead of an axial bending spring we use our generalized altitude spring model
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(a) (b)

Figure 5.3: A demonstration of our new altitude springs on both volumetric tetra-
hedral models (left) and thin shell models (right). (a) A volumetric torus with no
forces collapses to a puddle and subsequently recovers after the spring strengths are
increased. (b) A similar test performed using a thin shell.

Figure 5.4: A pair of triangles sharing an edge can have its bending modeled by two
springs, a bending spring between the unshared vertices and an axial bending spring
between a virtual node on the shared edge and a virtual node on the bending spring.
The bending spring edge and the shared edge form a tetrahedron so this axial bending
spring is really an edge/edge altitude spring.
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described above. A simulation using this model is shown in Figure 5.3(b) where a

shell model collapses to zero height, and then the stiffness of all springs is increased

allowing it to recover.

5.4 Time Integration

Once a constitutive model is chosen, simulation requires integrating the equations of

motion through time. Many schemes have been developed for time evolution of solids.

Elastic terms typically incur linear time step restrictions whereas damping terms incur

quadratic restrictions. Thus, many practitioners have turned to fully implicit methods

(see e.g. [6]), which unfortunately tend to damp high frequency elastic behavior,

producing simulations that appear to be embedded in a high-viscosity fluid. One

can combat this by using semi-implicit approaches such as [151]. More recently, [16]

proposed using the Newmark scheme which computes damping forces implicitly and

elastic forces explicitly so that there is only a linear time step restriction and high

frequency elastic behavior is preserved. For better accuracy, we use the variant of

[139], where the Trapezoidal rule application is replaced by a backward Euler step

followed by an extrapolation step. This method can be broken up into the following

steps:

1. vn+1/2 = vn + ∆t
2

a(tn+1/2, xn, vn+1/2)

2. xn+1 = xn + ∆tvn+1/2

3. vn+1/2 = vn + ∆t
2

a(tn+1/2, xn+1/2, vn+1/2)

4. Extrapolate vn+1 = 2vn+1/2 − vn

where ∆t is the time step, v is the velocity, a is the acceleration, and xn+1/2 =

(xn + vn+1)/2.
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5.5 Implicit Linear Springs

5.5.1 Implicit Linear Springs

Integrating stiff springs using explicit or even semi-implicit (implicitly damped) time

integration can be intractable due to stringent time step restrictions. To increase the

efficiency of our simulations we could use a fully implicit spring model, but this usually

requires Newton-Raphson iteration ([6] used one iteration) as well as techniques to

symmetrize the forces. Instead, we propose a new discretization of linear springs with

elastic forces that are truly linear in position.

Consider the spring Equation 5.1) at time tn+1 between two points xn+1
1 , xn+1

2 is

F n+1 = k
(
‖xn+1

2 − xn+1
1 ‖/l0 − 1

)
d̂

n+1

where d̂
n+1

= (xn+1
2 −xn+1

1 )/‖xn+1
2 −xn+1

1 ‖ is the spring direction. If we rewrite the

force as

F n+1 =
k

l0

(
(xn+1

2 − xn+1
1 )Td̂

n+1 − l0

)
d̂

n+1

it is clear that fixing the spring direction at time tn makes the force linear in xn+1,

i.e.

F n+1 =
k

l0

(
(xn+1

2 − xn+1
1 )Td̂

n − l0

)
d̂

n
.

Substituting xi
n+1 = xi

n + ∆tvi
n+1 yields

F n+1 =
k

l0

(
(xn

2 − xn
1 )Td̂

n − l0

)
d̂

n
+ ∆t

k

l0
(v2

n+1 − v1
n+1)Td̂

n
d̂

n
.

The first term is the typical explicitly integrated elastic force, and the second term

is the typical damping force from a semi-implicit method except that the damping

coefficient is fixed at ∆tk/l0. Notably, this indicates that if one adds the exact correct

amount of damping to the semi-implicit discretization, then the spring remains stable.

In summary, springs with fixed directions have elastic forces that are linear in the

position and only require a single implicit linear solve for the damping forces to be

unconditionally stable. Of course the usual damping can still be added making the

damping coefficient ∆tk/l0 + b, where b is the usual damping coefficient. We note
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Figure 5.5: Both cloth (left two figures) and hair (far right) integrated using one time
step per frame. However, excessively large time steps in implicit methods lead to
larger damping. The third figure from the left depicts the exact same cloth simulation
with a smaller time step showing that the larger damping stems from the time step
size, not the method.

that while there are other approaches to deriving linear springs (see e.g. [34, 42]),

our particular one has the advantage that the linear term projects only in the spring

direction, giving less damped results. Finally, note that these springs are readily

included in the Newmark semi-implicit time integration just as any other force which

is linear in the positions (similar to the zero restlength binding springs in [139]).

Figure 5.5 shows cloth and hair integrated at the frame rate using these springs.

5.6 Conclusion

We have presented the general outline of techniques required for solid simulation: a

mesh, a constitutive model, and a time integration scheme. We also have presented

an improved volumetric altitude spring constitutive model that prevents inversion

using only simple linear springs. To allow fully implicit integration of linear springs

in the context of a Newmark method, we have also provided a discretization that

is truly linear in position for linear stress/strain springs. However, in this chapter

we did not discuss the remaining important parts of solids simulation–collision and

interactions. In the next two chapters we consider self and body interactions, and we

use the techniques presented in this chapter for the simulation of cloth and hair.



Chapter 6

High Fidelity Cloth Simulation

Cloth simulation is pervasive in film, e.g. the untangling strategies for Monsters Inc.

[7], the collision and stiction methods for Terminator 3 and Harry Potter [16], and the

wrinkle system for Shrek 2 [31]. Cloth simulation also promises to have significant

future impact on the clothing industry [27] (see also [32]). While, some researchers

have focused on real-time simulation for computer games or non-hero characters [99]

that have lower quality requirements, our focus is on hero characters, online shopping,

and related applications that need photorealistic cloth and clothing. Achieving such

realism requires higher resolution because the number of bends and folds is limited

by the underlying cloth discretization.

Thus the focus of this chapter is allowing simulation of extremely high resolution

meshes and producing interactions commensurate with this level of detail. Cloth

papers typically consider the simulation of relatively few triangles: [56] used 10-40

thousand elements, [146] used 5-38 thousand elements, and [164] mostly considered

a few thousand elements but their highest resolution simulation was a very thin

ribbon with 80 thousand elements that exhibits bending but no folds or wrinkles.

These resolutions cannot resolve or simulate folds and wrinkles at the granularity of

Figure 6.1. Most simulation techniques would fail if resolution were increased because

of two problems: robustness and tractability. These problems typically manifest

themselves in time integration and self-collisions/contact (see Figure 6.3). To solve

these problems we use a combination three techniques described below.

75
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Figure 6.1: Two examples of cloth showing the types of intricate folds and wrinkles
we wish to simulate; both would require high resolution simulation. A satin bed sheet
(left) shows that larger scale cloth typically has more folds and wrinkles. Intricate
detail is also visible on a Greek sculpture (right) sculpted to resemble a light fabric.
Both images are public domain from the Creative Commons of Wikipedia.

(45,000 triangles from [15]) (1,700,000 triangles)

Figure 6.2: High resolutions are necessary to represent and simulate highly detailed, so
our goal is to maintain the same robustness and quality while having better scalability.
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First, we must improve time integration as at high resolutions, it begins to domi-

nate. Semi-implicit methods have a worse time step restriction as the mesh is refined

while fully implicit methods could take the same time step size but would then be less

accurate and require more iterations to solve their linear systems. For these reasons,

parallelism becomes an attractive approach, and in Section 8.2 we describe how this

is done for cloth.

Second, we improve self-collisions so that tractability of collisions is improved while

maintaining robustness guarantees. Self collisions and interactions are important not

only because they prevent interpenetration but because they also force the cloth to

form folds and wrinkles. Recent works have demonstrated that it is possible to stop

all collisions even in complex scenarios [124, 75, 15, 74], while other works have shown

that untangling is useful as well [159, 162, 164] especially in situations such as pinch-

ing [7]. Geometric collisions (using swept primitives) can resolve complex interactions

accurately, but they become intractable as the resolution increases. Repulsion based

approaches (even with untangling) are not robust enough as the approximate geomet-

ric information they use degrades as simplex density increases. Even robust hybrid

approaches such as [15] still require the use of a geometric collision algorithm for every

time integration step that contains a collision, which becomes intractable as the mesh

resolution increases and the time steps become smaller. We propose an extension to

the hybrid repulsion/collision technique, defining a history-based repulsion/attraction

scheme that allows us to rely less on geometric self collisions while still remaining fully

robust, allowing tractable scaling to higher resolutions. Notably, the knowledge of

a collision free state enables the application of smarter repulsion/attraction forces

without heuristics to estimate the untangled configuration (e.g. voting algorithms

and methods that preclude the use of edge/edge collisions).

Third, we introduce more accurate friction handling between cloth and collision

objects to ensure that the extra simulated resolution is used effectively. Cloth object

friction and interaction is especially important as the object a cloth is interacting with

defines much of its behavior. We propose a novel technique for cloth-object collision

and friction that is significantly more accurate than previous methods applied to a

semi-implicit or implicit time stepping scheme. See Figure 6.8.
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Figure 6.3: A piece of cloth with a half-million triangles is forced to twist by a
rotating cylinder. Even under such high tension, the cloth remains self-intersection
free showing the robustness of our algorithm at high resolution.
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6.1 Previous Work

Computer graphics cloth simulation extends back at least 20 years, and early examples

include [177, 151, 150, 152, 18, 111, 14]. A good background on cloth modeling is

provided in [72]. We use a variant of the semi-implicit method introduced by [16], but

other examples of time integration for cloth include [6, 101, 115, 13, 163, 110]. Our

goal is to obtain folds and wrinkles in a physically based fashion from the interplay of

in-plane constitutive forces and bending forces, as opposed to adding the wrinkles via

a separate modeling system, e.g. [64, 24, 31]. Although we do not address constitutive

models for in-plane forces, our preliminary tests show that finite elements and mass-

springs models behave similarly, but we refer the interested reader to [43, 77]. Bending

models have been addressed by [23, 16, 58, 10, 155, 165]. Although we currently use a

static resolution grid, an adaptive approach would allow even more resolution, see e.g.

[59]. For collision detection, we use straightforward algorithms and extensions based

on well known work but refer the interested reader to [56, 146] and the references

therein. We also note the work on improving efficiency in low curvature regions

[160, 159].

6.2 Algorithm Overview

We use a simple mass-spring constitutive model (as was described in Section 5.3.1)

with edge springs as well as bending springs that connect unshared vertices of ad-

jacent triangles which allows simulating arbitrary triangle meshes. More accurate

models such as finite-element constitutive models are possible, but we are interested

in accurately modeling collisions and interactions so we found this simple model to

be sufficient. We use the semi-implicit time integration scheme described in

Since our focus is collisions and interactions we will augment the basic time semi-

implicit integration scheme of Section 5.4 with the missing interaction steps. Our

approach to integrating time integration and collision detection/response is similar

to [15], but with some key differences. As they did, we have an outer collision loop

that puts the mesh into a collision free state. Within this outer collision loop a nested
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time integration scheme is used to produce a candidate final position and velocity for

each particle in the mesh. The collision loop then calculates an effective velocity

by subtracting the candidate position from the last collision free state and modifies

this effective velocity until it obtains a displacement that removes all collisions. If

collisions were found, [15] rewound to the last collision free state and repeated the

simulation with half the number of time steps per collision step, eventually resulting

in 1 time step per collision step. In Section 6.3 and Section 6.4, we describe how our

history-based attraction/repulsion framework allows us to circumvent this difficulty

and thus achieves better performance while maintaining robustness (see Figure 6.11).

The ith iteration of our outer collision loop step proceeds as:

A. Compute repulsion pairs and their orientation history

B. Perform ki time integrations (inner loop)

1. ṽn+1/2 = vn + ∆t
2 a(tn+1/2, xn, ṽn+1/2)

2. Modify ṽn+1/2 with elastic and inelastic self-repulsion

3. x̃n+1 = xn + ∆tṽn+1/2

4. Collide with body objects to obtain xn+1 and vn
?

5. vn+1/2 = vn
? + ∆t

2 a(tn+1/2, xn+1/2, vn+1/2)

6. Extrapolate ṽn+1 = 2vn+1/2 − vn
?

7. Modify ṽn+1 to vn+1 for friction with objects

8. Modify vn+1 with friction and inelastic self-repulsion

C. Detect and resolve moving collisions.

Here ∆t is the time step, a(t, x, v) is the acceleration and xn+1/2 = (xn + xn+1)/2.

In Step A we search hierarchies for repulsion pairs as described in Section 6.4. In

Step B we perform ki time integrations which consists of several steps: Step B.1 is a

backward Euler solve to obtain a temporary velocity, which is subsequently modified

with self-repulsions in step B.2 (Section 6.4), before being used to advance the cloth

positions forward in time in step B.3. Then in step B.4 our novel cloth-object colli-

sion algorithm (Section 6.5) is applied, obtaining the final collision corrected position
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xn+1 and intermediate velocity vn
? . Next, we apply a backward Euler solve in step

B.5 followed by an extrapolation in step B.6, which are equivalent to applying the

trapezoidal rule to velocity but are significantly better conditioned than the standard

formulation (see [139]). Finally, in step B.7 we modify this final velocity to obtain the

appropriate cloth-object friction as dictated by our new cloth-object collision algo-

rithm (Section 6.5) and subsequently apply self-repulsions in step B.8 (Section 6.4).

Finally step C ensures that no collisions remain by detecting and removing collisions

described further in Section 6.3.

We also employ distributed memory parallelism using message passing so that our

algorithm can be used on more than one machine rather than being constrained to a

single shared memory machine. Work is distributed across m processors by partition-

ing the particles into m disjoint sets. Our parallelization strategy and contributions

are discussed in Section 8.2.

6.3 The Outer Collision Loop

During the course of a simulation, an outer loop of collision steps is performed where

the ith collision step evolves time using ki time integrations and then resolves colli-

sions. As in [15] this loop maintains the invariant that positions are collision free at

the beginning and end of each of these collision iterations. If ki > 1 and a geometric

collision was detected, [15] rewound time and reran the collision iteration with ki/2

and this process would continue until ki = 1. Only then were robust geometric self

collisions used to zero the relative velocity of interacting collision pairs. We instead

never rewind, and run with a fixed ki between 8 and 16 ensuring tractability in com-

plicated high resolution interactions. [15], by contrast, applied repulsions only at the

end of the collision step, using the stored self collision free positions. They could not

apply repulsions per time step because as positions moved they had no way of track-

ing side coherence so repulsions could exacerbate tangling that produced more rigid

groups and thus visual artifacts. The key to allowing per time step repulsions without

creating artifacts is to store history information together with repulsions discovered
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in step A so that the repulsions applied per time in step B.2 and B.8 do the right

thing (which we describe in Section 6.4).

In step C, geometric collisions test whether an interaction pair (point/triangle

or edge/edge) intersects by checking if the linear trajectories from the last known

collision free positions to the current time integrated positions (after ki time steps)

interfere. The linear trajectory implicitly defines the notion of an effective velocity

which equals the net change in position divided by the total time elapsed since the

last collision free state. Potentially colliding pairs are found by box hierarchy searches

with bounding boxes containing the swept trajectory primitives. Pairs of leaf boxes

are further pruned by checking for intersections in a coordinate frame that moves

with the average effective velocity of the involved particles.

Potentially colliding pairs are processed in Gauss-Seidel fashion using the algo-

rithm in [15] which requires the solution of a cubic equation to determine if the four

points involved become coplanar. The inelastically applied collisions are handled by

zeroing the relative effective velocity and using this to compute the new positions.

If the final positions of the collision pair are in too close proximity, an elastic self

repulsion is applied (exactly as in self-repulsion) to push them further apart. We

stress that, unlike in [15], this elastic repulsion impulse uses the average time step

size taken during the collision loop as opposed to the total time elapsed during the

collision loop because we can rely on future per time step repulsions. For any affected

particle, we use its new position to calculate a new effective velocity.

After processing all potentially colliding pairs and obtaining new effective veloci-

ties, new collisions could be generated. Thus, we iterate the entire algorithm until no

collisions are found. The second and later iterations are significantly less expensive

than the first since we can reduce the cost of a hierarchy search by considering only

box pairs whose expansion contains nodes modified in the previous iteration. As in

[15], we rely on rigid “impact zones” when collisions cannot be resolved after a num-

ber of iterations. Not noted by other authors we found that rigid groups sometimes

form between coplanar, colinear, or colocated points causing the inversion of the iner-

tia tensor to fail. These situations occurred as we scaled to higher resolutions which

explains why previous authors did not observe them. Thus we robustly compute the
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Figure 6.4: Inversion criteria for point/triangle and edge/edge interaction pairs. (Top)
Point/triangle pairs are considered inverted if the point is in a different triangle half-
plane. (Bottom) Edge/edge pairs are considered inverted if the shortest direction
vector rotates too far from its collision free orientation.

pseudoinverse of the symmetric 3×3 inertia tensor using a singular value decomposi-

tion. Once the algorithm finds no further collisions, step C is complete and we satisfy

the collision-free invariant with the same robustness and visual quality as [15].

6.4 History-Based Self-Repulsions

Since geometric self collisions are expensive to compute and we would like to perform

them less frequently, we rely on self-repulsions to help prevent and simplify resolution

of collisions. Similar to collisions we consider both point/triangle and edge/edge

interactions. Pairs are obtained in step A using a bounding box hierarchy which is
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discussed more extensively in Section 8.2. For any type of interaction, we first apply

it for all point/triangle pairs followed by all edge/edge pairs, since there are fewer

point/triangle pairs and their behavior is typically more robust. In step B.2 of the

time integration loop, first an inelastic collision impulse is used to stop approaching

interaction pairs, and then if necessary a spring-based elastic repulsion is used to push

interaction pairs further apart. Note that the velocity used in step B.3 is discarded and

that steps B.5 and B.6 fully integrate the velocity from time n to time n+1. Frictional

effects are only calculated in step B.8 in order to implement self repulsions. The

amount of friction is determined based on the normal forces caused by the inelastic

repulsions used to stop cloth from encroaching on itself. Since elastic collisions can

produce artifacts, we use the elastic repulsions only to modify the velocity that will

be used to update the positions to reduce the chance of collisions while only using

inelastic repulsions for the actual update to the velocity in step B.8.

[15] also made use of repulsions to ease the requirements on the geometric collision

stage, but he applied them immediately before the collision stage (i.e. in our step

C) using the linearized effective velocities. We instead use actual simulation velocity

state and apply repulsions at per time step granularity resulting in increased stability

and robustness. We follow [15]’s formulation of repulsions. Here we consider point-

face, but edge-edge is similar. For an inelastic repulsion the impulse is Ic = mvN/2

where vN is the normal velocity and m is the mass of all the pair’s particles. For an

elastic repulsion of spring stiffness k we use

Ir = −min

(
∆tkd, m

(
.1d

∆t
− vN

))
(6.1)

where

d = h− (x4 − w1x1 − w2x2 − w3x3) · n̂ (6.2)

and wi are the barycentric weights of the free point x4 projected to the triangle, x{1,2,3}

are the triangle’s point locations, h is the repulsion thickness, and n̂ is the triangle

normal. Note the elastic repulsion is limited to 0.1 of the interpenetration, removing

the need for any damping parameter and the inelastic repulsion does not require

damping as it provides infinite damping in the normal direction. The modification
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of the friction is also accomplished with an impulse that uses the change in normal

velocity applied by the inelastic or elastic collision ∆vN .

Unfortunately, repulsions only work if the interaction pairs contain the correct no-

tion of sidedness, as they otherwise work against an interference free state if the pairs

have crossed (e.g. if a point spuriously crosses a face). Several authors have suggested

switching to attractions (e.g. [7]) after cloth has non-physically interpenetrated itself,

however it can be difficult to ascertain whether attractions or repulsions should be

applied and thus sometimes the interactions are turned off altogether. Since crossing

may occur during the time step, checking for interpenetration at discrete times is

insufficient. [15] avoids this problem by only applying repulsions in the collision free

state, which has the downside of only allowing repulsions at the granularity of the

outer collision loop. Since mesh elements can move considerably during the time in-

tegration, many potential repulsions are missed, reducing the benefit of repulsions in

avoiding collisions as well as reducing the amount of small scale bending and folding

that could be produced.

Our key idea is to compute and store interaction data from the collision free state

in step A and to subsequently use this data to apply history-based repulsions and

attractions during all time integration steps during step B. This increases efficiency

because we do not apply a per time step collision detection scheme but instead detect

all potentially interacting repulsion pairs during the outer collision loop. Although

this tends to produce more pairs than is necessary, and in fact we purposefully use non-

aggressive pruning to capture more pairs because the elements can move significantly

during a sequence of time steps, it is quite efficient to perform a simple prune at

each time step to see if the potentially interacting pairs are indeed interacting. The

total cost of all operations in our per time step repulsion method (including detection

and application) is typically 7% of the code run time. This approach contrasts with

others’ who have used voting schemes to construct sidedness (e.g. [161]) as our use

of the collision free state to determine orientation alleviates the need for majority

(voting) approaches.

During the outer collision loop in step A, after finding all potentially interacting
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pairs, we compute and store the relative orientation for later use in our history-

based repulsion scheme. For the point/triangle case, we apply a repulsion whenever

the point remains on the correct side of the triangle as determined by its normal

(Figure 6.4 top), and otherwise switch to an attraction. This is implemented by

ensuring the normal n̂ always points toward the free point at the collision free time.

If not then the points are reordered. i.e. if we have pair (x1, x2, x3, x4) then if

(x2 − x1 × x3 − x1) · (x4 − x1) < 0 then consider the pair as (x1, x2, x4, x3). Then

as a point x4 passes from the correct side through the triangle, d will increase in

Equation 6.2, leading to a larger impulse in a correcting direction in Equation 6.1. For

the edge/edge case, we store the shortest direction vector between the two interacting

edges in the collision free state s0, and later compare this with the shortest direction

vector s in the current state (Figure 6.4 bottom). This formulation does not penalize

rotation of segments in parallel planes, but it does penalize rigid body rotations. This

makes the edge/edge history-based heuristic less reliable than the point-face one so

we only flip the current shortest vector if s0 · s < ε (where ε = 0 is aggressive and

ε = .9 is conservative).

6.5 Cloth-Object Collisions

Bridson [16] suggested a level set based collision algorithm that processes each position

x̃n+1 and velocity vn as follows. Suppose φ(x) measures the signed distance from a

point in space to all objects in the scene φ(x) < 0 is inside and φ(x) > 0 outside.

Then if φ(x̃n+1) < 0, a collision is detected with depth d = |φ(x̃n+1)| and normal

N = ∇φ(x̃n+1), assuming that ∇φ has already been normalized. The position is then

projected in the normal direction xn+1 = x̃n+1 +dN as shown in Figure 6.5 (left). For

the sake of exposition the following steps define a function v? = Γ(v) that adjusts the

velocity to remove any inward normal component and include the effects of friction.

The normal and tangential velocity components are computed as vN = vT N and

vT = v − vNN for the particle and vBN = vT
BN and vBT = vB − vBNN for the body.

Here vB is the velocity of the body at time n + 1. The modified normal velocity

v?N = max(vN , vBN) ensures that the relative velocity does not point into the body.
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Figure 6.5: Particles are depicted falling towards an incline plane. (Left) A simple
level set adjustment to position incorrectly projects in the normal direction. (Right)
Our improved method first finds the collision point and then steps to the final position.

The tangential velocity is modified to v?T = vBT + max
(
0, 1− µv?N−vN

|vT,rel|

)
vT,rel where

vT,rel = vT − vBT and µ is the coefficient of friction. The final result is

v? = v?NN + v?T .

The two sources of inaccuracy in this previous method emanate from errors in

the position update obtained by projecting in the normal direction and the subse-

quent changes in velocity incurred during the conjugate gradient solve. Although

[16] constrained the normal velocity during their second conjugate gradient solve, the

friction and motion in the tangential direction were still adversely affected. While

infinite friction could be obtained by also constraining the tangential velocity, one

cannot accurately obtain finite non-zero friction, and moreover one cannot constrain

the velocity in the first conjugate gradient solve as it would cause cloth to stick to

objects.

To compute a more accurate collision adjusted position, we find the point where

the level set changes sign xc = xn + θ∆tṽn+1/2 where θ = φ(xn)/(φ(xn) − φ(x̃n+1))
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by linear interpolation. If the object is moving, φ depends on time as well, and we

replace φ(xn) with φ(xn) + ∆tvBN in the definition of θ noting that all evaluations of

the level set function φ occur with the time n + 1 collision body. Next we compute

v
n+1/2
? = Γ(ṽn+1/2) which is used to move from xc to the final modified position

xn+1 = xc + (1 − θ)∆tv
n+1/2
? . Note that (1 − θ)∆t is the remaining fraction of our
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Figure 6.6: Plot of displacement and tangential velocity over time for a single particle
moving down an incline plane. Our result is coincident with the analytic result for
both accelerating and decelerating particles, while the previous method accelerates
too fast in both cases. In particular the analytic velocity is v(t) = v0+(sin θ−µ cos θ)gt
when not stopped. If µ > tan θ stopping happens when v(v0/(g(sin θ−µ cos θ))) = 0.
The analytic position is x(t) = v0t + (sin θ − µ cos θ)gt2/2. We use θ = π/5, g = 9.8.
For accelerating we use v0 = 0 and µ = .6 and for decelerating we use v0 = 1 and
µ = .9
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time step after the collision as shown in Figure 6.5 (right). Although v
n+1/2
? yields

the correct post collision velocity for use in the position update, we also compute

vn
? = Γ(vn) for subsequent use in the trapezoidal rule (steps B.5 and B.6) which is

more correct at time n. While steps B.1 to B.3 of the time integration scheme are

used to obtain the correct position, steps B.5 and B.6 are used to update the velocity

which also must be corrected for contact. Specifically, any forces applied during the

trapezoidal rule velocity update will contain both tangential and normal components

so that the conjugate gradient algorithm must project the normal components of the

forces to zero to keep points in contact constrained to vn
?N .

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0

0.2

0.4

0.6

0.8

1.0

P
o
s
it

io
n

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0

0.5

1.0

1.5

2.0

V
e
lo

c
it

y

New Method
Analytic

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

P
o
s
it

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

V
e
lo

c
it

y
Accelerating Tetrahedron

Decelerating Tetrahedron

Figure 6.7: A single tetrahedron slides down an incline plane, matching the analytic
solution for both accelerating and decelerating test cases. The analytic formulas and
parameters are the same as the particle’s.
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Similar to [6] we can determine the net normal force applied during the trapezoidal

rule (or for backward Euler) and use it to correct our friction algorithm. Although [6]

used a simple model, we use the more complex Γ function. For the sake of exposition,

assume that the final velocity step was a backward Euler step to tn+1 instead of the

trapezoidal rule, then the velocity update equation is

ṽn+1
P = vn

? + P (
∆t

m
Fi(t

n+1, xn+1) +
∆t

m
Fd(t

n+1, xn+1)ṽn+1
P )

where Fi is the velocity independent force, Fdṽ
n+1 is the linear velocity dependent

damping force, P projects away the normal component of each colliding point with

I − NNT , and ṽn+1
P are the solved velocities (which have normal components con-

strained by projections). Using the same forces without applying the projection gives

a different result

ṽn+1
NP = vn

? +
∆t

m
Fi(t

n+1, xn+1) +
∆t

m
Fd(t

n+1, xn+1)ṽn+1
P

which includes the global effects of the projection in Fd but applies all forces to the

velocities without projection. Although ṽn+1
NP does not have a zero normal relative

velocity for nodes in contact, its damping forces have been properly globally condi-

tioned for contact, i.e. they use the ṽn+1
P velocity. To include contact in step B.7, we

take ṽn+1
NP and apply Γ to obtain vn+1 = Γ(ṽn+1

NP ). Note that Γ will compute the same

normal force that P applied during the conjugate gradient solve. In addition, Γ will

apply the appropriate friction that P did not apply.

To test our new algorithm we consider a single particle sliding down an incline

plane. We consider two cases: one with a particle slowing down and coming to

rest and another with a particle starting from rest and accelerating. (Note in these

simple cases, the incline plane does not move, the normal does not change and the

particle starts and stays in contact, i.e. θ = 0) Figure 6.6 compares the previous

algorithm, our improved version, and the analytic solution. Since the single particle

test case does not require conjugate gradient, as gravity is the only force, we show in

Figure 6.7 the same test repeated with a tetrahedron that uses non-trivial damping

forces. Figure 6.8 shows an example where cloth rolls with static friction.
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If many collision objects are used during a simulation, the cost of evaluating φ

can be prohibitive, especially for memory-intensive collision objects which we desire

to process only once. For efficiency we use a uniform spatial partition for collision

body occupancy and iterate over cloth points, creating a list of potential interactions.

Subsequently, each collision body is accessed only once and all potentially interacting

points are processed with it.

One limitation of this algorithm is that the linearizations used for the position

correction can be problematic on high curvature objects. Another limitation of this

algorithm is that it queries for point penetration within the collision body, so if a

collision body is excessively thin or velocities are high, a collision might be missed. In

practice this is rarely an issue and in fact this type of collision approach is frequently

used for a character’s body in order to simulate clothing. Alternatively, body collisions

can be handled within our self-collision framework instead, although the much more

efficient cloth-body algorithm should be favored if it is applicable.

6.6 Examples

We ran our simulations with meshes ranging from a half-million to 2 million triangles

on between 2 to 4 quad-processor Opteron 2.8 GHz machines connected by gigabit

ethernet, but obtained similar performance profiles on commodity dual-core dual-

processor machines. We used 16 time steps between each collision processing step

though we reduced this number to 4 or 8 during a few collision intensive sections.

Automatically choosing the number of time steps between collision processing steps

is important future work but we emphasize that approaches that scale to 1 time step

per collision loop whenever collisions occur [15] or use 1 time step per collision loop

[74] become intractable on large meshes. Even on lower resolution meshes where

there are fewer collisions, we still get a benefit by running with 16 total loops (e.g.

Figure 6.11). None of our examples used viscous air (ether) drag to damp the veloci-

ties, and only the wardrobe and leaves examples used wind drag. We rendered cloth

using a standard ray tracer. Although the results of cloth simulations can have their

resolution artificially increased in a subdivision postprocess (even avoiding collisions
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Parameter Description Value
Ee Edge Youngs Modulus (Stiffness) 4.14
ξe Edge Spring Overdamping Fraction 15
Eb Bending Youngs Modulus (Stiffness) 0.41
ξb Bending Spring Overdamping Fraction 8
CG Tolerance Convergence for Backward Euler 0.001
Mass Mass of node in mesh 1e-6
g Gravitational constant 9.8
h Repulsion Thickness 0.01
k Repulsion Spring Constant 30
ki Collision Total Loops 4-16

Table 6.1: Parameters of our model.

as in [15]), our simulated examples were of sufficient resolution to require no subdi-

vision except for the example that used 100 pieces of lower resolution 10 thousand

triangle cloth. This is an important step as subdivision is only a stop-gap measure

that makes renderings visibly smooth, and it cannot introduce detail missing from

the low-resolution simulation. We have summarized some of the key parameters that

we used to generate our examples in Table 6.1.

We begin with our lowest resolution example, a half-million triangle version of

a twisting cloth torture test shown in Figure 6.3, demonstrating the robustness of

our algorithm even in difficult collision situations. This example averaged 30 minutes

per frame, but as the two ends become intertwined the strain on the knotted self-

collision area becomes very high and frames take longer to complete. In Figure 6.9

we demonstrate that we can handle many pieces of cloth, simulating 100 separate

falling cloths with 10 thousand triangles each, totaling 1 million triangles. We employ

a wind-drag model that produces interesting deformation and flutter, facilitating

inter and intra-cloth interactions. For each vertex, we apply a linear drag in the

normal direction as a simple approximation to the pressure force, noting that a better

approximation would be quadratic in velocity. We maintain a high wind speed near

the ground in order to push the lightweight pieces of cloth around, causing further

interactions and increasing the number of dynamic collisions that must be resolved

even after the pieces of cloth hit the ground. At 5 minutes per frame across two

machines, this was our lowest cost simulation.
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Example Resolution Avg. frame time Processors
Twisting Cloth 0.5 million 30 mins 16
Cloth Leaves 1 million 5 mins 8
Spinning Ball 1.8 million 20 mins 16
Curtain & Ball 1.7 million 45 mins 16
Wardrobe 2 million 6 mins 16

Table 6.2: List of our examples with their resolutions, average time per frame, and
number of processors they were run on.

The next examples demonstrate a single high resolution mesh with simulation

parameters chosen to accentuate folds and wrinkles and their subsequent collisions

and interactions. Figure 6.10 shows the spinning ball example from [15, 146] with an

increased resolution of 1.8 million triangles. To promote a very high level of detail we

avoid using overly stiff cloth and air drag, use high sphere but relatively low ground

friction, and raise the vertical position of the sphere slightly so that the initial draping

of the cloth results in even more self collisions at the base of the sphere. This example

averaged 20 minutes per frame. Figure 6.12 shows the curtain and ball example from

[15] at a resolution of 1.7 million triangles. The multiple layers of contact that form

when the cloth folds over itself make this example particularly difficult, especially

when the sphere pushes through the clump of layers. The average frame time for

the simulation was 45 minutes. Figure 6.13 shows a 2 million triangle cloth draped

over a wardrobe. We initially animated several vertices of the cloth to obtain a more

interesting draping effect. After an initial settling period, we change the coefficient of

friction on the wardrobe allowing the cloth to fall and form many folds and wrinkles

under the effect of wind drag. The cloth in this simulation resembles the photograph

of draped cloth in Figure 6.13 and the satin depicted in Figure 6.1. This simulation

averaged just over 6 minutes per frame. A summary of the resolutions and timings

of our examples is shown in Table 6.2, and we have provided a breakdown of our

algorithm timing in Table 6.3.

We found parallelism essential as it allowed us to scale to very high resolutions

although it alone was not responsible for our results. In fact we first parallelized

the [15] algorithm but found it insufficient, motivating our other improvements. For
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% of % of
Simulation Step total sim subpart
Compute repulsion pairs/history (Step A) 3-7%
Inner time integration loop (Step B) 45-60%

Applying per time step repulsions 2-4%
Detect & resolve collisions (Step C) 37-48%

Applying collisions 20-45%
Computing swept bounding boxes 5-20%
Traversing hierarchies 5-15%
Inter-processor communication 40-70%

Table 6.3: A breakdown of the time spent in each part of our algorithm.

descriptions of the parallel algorithm and a graph of speedup on our curtain and ball

example see Section 8.2.3.

6.7 Conclusion

We have addressed several issues in cloth simulation to allow simulating high resolu-

tion cloth, enabling us to represent and simulate intricate folds and wrinkles. Using

a multi-processor approach on commodity hardware we demonstrated simulations of

cloth with up to 2 million triangles. To make collisions more efficient on these large

meshes, we employ a history-based attraction/repulsion scheme that takes advantage

of the last known collision free state. Applying the repulsions/attractions at every

time step reduces the frequency at which the more expensive geometric collision al-

gorithm is used. In addition, to ensure resolution is used effectively, we correctly

handle cloth-object friction which facilitates formation and preservation of folds and

wrinkles at both low and high resolutions.
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Figure 6.8: A piece of cloth with initial tangential velocity falls on an incline plane
with high coefficient of friction, and undergoes static friction causing it to roll. The
cloth simulated by the previous method slips immediately on contact with the ground
and moves faster (incorrectly) down the incline. Note the resolution here is about
80,000 triangles, showing that even on lower resolutions we achieve better results.
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Figure 6.9: We drop 100 pieces of cloth with 10,000 triangles each (1 million triangles
total). A linear wind drag model causes them to flutter and interact. The simulation
time was under 5 minutes per frame.

Figure 6.10: A piece of cloth with 1.8 million triangles is draped over a ball. Low
ground friction causes the cloth to tightly pack beneath the sphere. As the ball begins
to spin, the high frictional coefficient causes the detailed folds of the cloth to twist.
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Figure 6.11: Timing comparison of using adaptive collision resolution with rewind
(Bridson) and the fixed total loop strategy that we can apply due to our history
based repulsion scheme.



CHAPTER 6. HIGH FIDELITY CLOTH SIMULATION 98

Figure 6.12: A piece of cloth with 1.7 million triangles is flipped by a sphere causing
it to fold over itself. The sphere then pushes through the complicated clump of folds.

Figure 6.13: (Left) A photograph of a real piece of cloth draped showing intricate
folds and wrinkles. The middle and right depicts a synthetic piece of cloth with
2 million triangles draped over a wardrobe. The coefficient of friction between the
cloth and the wardrobe is reduced, causing the cloth to fall. Small scale wrinkles and
fluttering are introduced by our wind drag model as shown in the right image. Notice
how the synthetic example has more folds and wrinkles which is due to it representing
a larger size piece of cloth.



Chapter 7

Hair Simulation

7.1 Introduction

Hair dynamics is one of the most challenging phenomena to simulate because of the

sheer number of hairs on the head and the complexity of the motion. Even so, hair

simulation has important applications for visual effects, animated features, virtual

hair styling and online stores. Consequently, researchers have developed methods

for its simulation, such as the seminal work of [130, 2] (see also the survey [170]).

Most research has managed the complexity of hair simulation by focusing on the

bulk behavior of hair, but we seek to capture the subtle and intricate details of hair,

requiring us to consider the non-collective behavior.

Some authors suggest that simulating every hair on the head is unnecessary as hair

behaves as a collective (see e.g. [118]); they instead use aggregate hair simulation tech-

niques. While the efficiency of these approaches is attractive, simulating aggregate

geometry also has drawbacks. In particular, using fewer degrees of freedom (DOFs)

forces hair to behave collectively even in situations where it should not (e.g. trendy,

messy or tangled hairstyles). Increasing the DOFs by simulating each individual hair,

as we propose, can capture these effects, but it also requires handling more interaction

constraints explicitly. Another drawback of clumped models is that even though hair

volume is easily maintained by using fluid incompressibility or repulsions with large

radii, intricate collisions and interactions with small or high curvature objects (e.g.

99
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the ear, a comb, etc.) cannot be resolved. Additionally, the geometric inconsistency

between simulated and rendered geometry can produce artifacts such as self or body

interpenetrations. Lastly, subtle details such as stray hairs, clump separation, etc.

are not handled by aggregate models. To address the above drawbacks, we propose

using a non-clumped simulation technique. Though this requires more computation,

this allows us to achieve non-collective behavior.

In this chapter, we attempt to simulate as many individual hairs as possible by

using a constitutive model that is simple and fast but also can model twist and

curly hair. To do this, we use a mass/spring model which is computationally inex-

pensive and adept at modeling both object collisions and self-collisions. This also

has the advantage of being easily adaptable to an existing cloth or flesh simulator,

thus leveraging existing time integration and interaction/collision handling. Unfor-

tunately, mass-spring models have difficulty modeling twist, so we introduce a new

altitude-spring based hair constitutive model that can model torsion. Fortuitously,

the same model we use for hair torsion also provides an improved bending model for

cloth and shape preservation for tetrahedra. We also improve time integration by

introducing an unconditionally stable implicit linear spring model and a biased strain

limiting approach for hair. Body collisions are more efficiently/accurately handled by

introducing a better temporal interpolation scheme for level sets. Hair/hair interac-

tions are modeled by using geometric collisions and a stiction model. Our method is

demonstrated in several examples in which we only render simulated hairs.

7.2 Related Work

Though our focus is simulation, modeling hair geometry and styles is also an impor-

tant research topic see [87, 22, 169]. While these methods have modeled geometry

with hair counts approaching the number in the head (e.g. [180] uses fifty thousand

hairs), techniques for hair simulation have typically simulated fewer.
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7.2.1 Aggregate Hair Simulation

Researchers use different degrees of hair aggregation to manage computational com-

plexity. From most aggregate to least, these can be categorized as continuum,

clumped strand, adaptive clumped strand and non-clumped strand models. Early

work focused on single hair non-aggregate simulation using either mass/spring models

[130] or projective dynamics [2] (a length-preserving generalized coordinate model),

but both methods neglect torsion and self-collision/interactions. Thus, these meth-

ods parallelize trivially as each strand has no data dependencies on any other strand,

meaning they could be easily scaled to 100,000 hairs. Nevertheless, the lack of twist

and interaction modeling of these methods would not yield high fidelity simulations.

Hair modeled as a continuum implicitly treats interaction, which improves effi-

ciency while maintaining hair volume. [66] uses a fluid continuum that models contact

using viscosity together with rigid body chains embedded in the volume. [3] models

hair using unconnected particles embedded in a fluid continuum, but their render-

ings show that sometimes stray particles appear to float in space. [118] simulates

mass/spring guide hairs (neglecting twist), rasterizing them onto a level set grid to

model interaction and volume, producing stylized and uniform hair. [62] uses a sim-

plified mass/spring mechanical model on lattice points to define a deformation field

for embedded rendering hairs. While continuum approaches are efficient at modeling

bulk behavior, they have difficulty modeling discontinuous effects like hair separation,

and the highly intricate interacting geometry like curly hair, or individual hair twist.

Other authors have used a small set of discrete aggregate hair wisps or clumps that

are simulated separately. [120] uses a mass-spring envelope lattice per guide hair in

which rendering hairs are embedded. Unlike our mass-spring model, theirs is designed

to be used with large envelope volumes (especially for interactions). [21] simulates

guide hairs consisting of rigid body links attached with springs, synthesizing rendered

hairs with a statistical model; collisions are modeled using penalty forces. [63] uses

a sparse set of articulated rigid body (ARB) chains to produce hairs, foliage, and

character ears. Collisions require the solution of a quadratic program making it less

desirable for dense hairs. [12] also simulates hair using a finite-element constitutive

model (discussed below) using penalty methods for collisions.
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Even though clumped models do obtain some discontinuous behaviors not han-

dled by continuum models, clumped models still tradeoff some accuracy for efficiency.

To capture more detail in only some areas of a model, authors have recently consid-

ered adaptive clumped models. [11] uses a tree of varying size rigid body wisps and

provided heuristics for forming and breaking. [174, 173] use projective dynamics and

three discrete levels of detail (LODs) based on hair motion or camera distance to

allow real-time simulation. While targeted at real-time, this method could be used

with different settings to achieve higher quality simulations offline. However, the

fundamental assumption of all adaptive schemes is that some areas do not require

high fidelity, meaning computational savings can be achieved by varying simulation

resolution. Unfortunately, this is not always the case; for example, in highly dynamic

flipping or wind motions, the same detail is needed everywhere. Here, uniform ap-

proaches are more desirable as they do not incur the overhead of managing adaptivity.

Nevertheless, if adaptivity is appropriate, these schemes provide a useful framework

within which our mass-spring model could be integrated (see future work).

7.2.2 Strand dynamics

Researchers also have considered many mechanical models for strands which can

often be applied outside of their original aggregate context. In fact, many papers

only demonstrate a single strand, even though their mechanical models could be

applied to hair. [114] introduced the high order Cosserat (finite-element) model for

flexible rods, although he did not consider dynamics. [57] modeled flexible tubes

while also using a Cosserat-based scheme. [140] used a spatially adaptive dynamic

Cosserat model for interactively tying knots in ropes in real-time. [17] also simulated

knot tying, instead using an articulated rigid body system; gravity was neglected to

help user interaction. The preceding three methods use interpenetration to detect

collisions, so they would miss collisions if strand thickness was reduced to our hair

strand size or if velocity was increased. [167] uses a specialized solver that includes

torsion as a state variable to simulate thread.
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Researchers have used mass-spring systems, projective dynamics, articulated rigid

bodies, and other generalized or finite elements models as discussed above. Mass-

spring models are advantageous as they are simple, commonly implemented, and

handle collisions and constraints easily, but typically cannot model torsion, curly

hair, or exact length preservation. Projective dynamics solves the length preserva-

tion problem at the expense of using generalized coordinates, making collisions and

constraints more difficult. Generalized coordinate ARB schemes conserve length and

allow twist to be modeled, but also make collisions and constraints more difficult.

ARBs are also relatively expensive per body, especially if linear complementarity

problem (LCP) collision methods are used. Higher order finite element models like

Cosserat schemes (e.g. [12]) can create intricate helical guide curves using very few

DOFs. However, if one wanted to simulate thousands of interacting hairs, more

DOFs per hair would be required to resolve collisions and contact, making higher-

order methods less attractive. In particular, [12] scales quadratically as the number

of elements per hair are increased, and other high order methods are also more ex-

pensive per element. Moreover, the use of generalized coordinates in [12], [140], and

[167] makes collision/contact response more challenging. A summary of the tradeoffs

of various strand models (including ours) is shown in Table 7.1.

Phenomena Mass/ Proj. Rigid Super- Our
Spring Dyn. (chain) helices Method

Bending Yes Yes Yes Yes Yes
Torsion No No Yes Yes Yes (alt. spring)
Non-stretching No Yes Yes Yes Yes (strain limit)
Curliness No No No Yes Yes (alt. spring)
Constraints Easy Tricky Tricky Tricky Easy

Table 7.1: Adapted table from [Ward et al 2007] that shows a comparison between
various hair methods. The last column shows that our method relieves several prob-
lems with mass/spring models.
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7.3 Constitutive Model

Since our goal is to model as many realistically interacting hairs as possible, we pre-

fer a mass-spring model. For efficiency, we use tetrahedra instead of representing

coordinate systems explicitly. Furthermore, we avoid generally slower finite element

based models, instead using simple linear stress-strain springs. In addition, to pre-

serve effective coordinate systems, we use the new and improved altitude spring model

introduced in Section 5.3.4.

7.3.1 An Altitude Spring Hair Model

If we model a hair as a series of connected line segments, stretching can be modeled

with edge springs between every consecutive particle, and bending can be modeled

with bending springs between every other particle. The edge springs and bending

springs together form triangles that implicitly represent the orientation of the hair.

Twist can be modeled by attaching torsion springs that connect each particle to a

particle three particles away from it (see Figure 7.2(a)). These springs imply tetra-

hedra allowing the use of our generalized altitude springs to prevent collapse. This

scheme works well on curly hair where no set of three consecutive particles is colinear

so every tetrahedron has non-zero volume. Unfortunately, for straight hair all the

particles are colinear meaning that the triangles formed by edge and bending springs

have zero area so orientation (and thus twist) cannot be represented. We address

this by introducing additional particles perturbed from the main hair axis to obtain

non-zero area triangles.

If we duplicate and perturb the middle particle of two colinear segments, we could

handle the original middle particle in three ways. If we did not constrain it, a quadri-

lateral is formed that can deform arbitrarily (Figure 7.1(a)). If we constrained it,

then all bending degrees of freedom are lost (Figure 7.1(b)). If we left it uncon-

strained, but also attached a spring between it and the perturbed particle, bending

is incorrectly constrained in one direction (Figure 7.1(c)). Thus, instead of creating a

single new particle, we create two new particles at the midpoints of the two segments

and perturb them to form two triangles (Figure 7.1(d)). These triangles should be
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Figure 7.1: Various options for creating perturbed points to form triangles in straight
hair. (d) yields both non-degenerate triangles and free bending.

Figure 7.2: Straight and curly hair models using edge, bending, torsion, and altitude
springs preserving the implied tetrahedra.
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Figure 7.3: Triangles define orientations for penalizing twist, and torsion springs
“trace” a continuous path through the non-degenerate triangles — but they are
blocked at straight hair segments (left). The subdivision and perturbation of our
method removes degeneracies so the path becomes continuous (right).

fairly rigid so they are given springs on their edges that are as strong as the hair

edge springs. From these triangles we can add bending and torsion springs to form a

full hair model as shown in Figure 7.2(b) where a tetrahedron is formed whenever a

torsion springs connects two opposite particles of a triangle pair. The process of en-

suring triangles are non-degenerate can be seen as a way of ensuring a path of torsion

springs through the hair (Figure 7.3). Thus instead of using an explicit coordinate

system we model an implicit one by using offset particles together with extra springs,

causing a marginally higher simulation cost, but still fitting into a simple mass-spring

framework.

Thus our algorithm prepares a curve for simulation by first sampling discrete

points x1, . . ., xm equally in arclength. Then a segment xi, xi+1 is subdivided if

it is colinear with xi−1 or xi+2. We perturb new particles off of the original curve

such that the edge lengths of the newly created triangles are equal to the length

of the parent segment. In addition, if there are many consecutive segments with

perturbed particles, we rotate the perturbed particles about the hair axis to ensure

good direction sampling. Afterwards, we consider every segment in order and build

the appropriate spring connections. Figure 7.4 demonstrates the plausibility of our

approach on single hair examples by comparing videos of real hair to our simulations.

Figure 7.5 shows that we can simulate different curly stiffnesses (top) and degrees of

curliness (bottom). We also note that one could always subdivide and perturb instead

of detecting colinearity, albeit at the cost of unnecessary particles. One downside of
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(a) (b) (c) (d)

Figure 7.4: Four single hair tests showing various behaviors observed in real hair
(top) and reproduced by our model (bottom). (a) a hair is forced on either endpoint
to buckle into a loop. (b) a hair is twisted at one end point causes tangling. (c) a
hair is pulled across another to exhibit stickiness. (d) a curly hair is stretched and
released.

this model is that there is some mixing of stretch, bend, and torsion forces which is

analogous to using bending springs in cloth.

7.4 Time Integration

We augment the time integration scheme of Section 5.4 with repulsion steps and strain

limiting steps integrate fromn tn to time tn+1 as follows:

1. vn+1/2 = vn + ∆t
2

a(tn+1/2, xn, vn+1/2)

2. Modify vn+1/2 with strain limiting

3. Modify vn+1/2 with self-repulsions

4. xn+1 = xn + ∆tvn+1/2

5. Body collisions modify xn+1 and vn
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Figure 7.5: (Top) A single curly hair dropped with varying stiffnesses showing that
we can represent different types of curly hair. (Bottom) Varying degrees of waviness
showing that our model can handle the full spectrum of hair curliness.



CHAPTER 7. HAIR SIMULATION 109

6. Self-collisions modify xn+1 and vn

7. vn+1/2 = vn + ∆t
2

a(tn+1/2, xn+1/2, vn+1/2)

8. Extrapolate vn+1 = 2vn+1/2 − vn

9. Modify vn+1 with self-repulsions

where xn+1/2 = (xn+xn+1)/2. Notice in particular that here we are ignoring details of

the outer loop from Chapter 6, as these details are the same. The velocity computed

in step 1 is processed with our new strain limiting approach (Section 7.4.1) as well as

self-repulsions before being used to update the positions in step 4. After the position

update, body collisions are applied first in step 5 and then self-collisions in step 6

(both of which are discussed in Section 7.5). The velocity from steps 1-4 is discarded,

and step 7 and 8 evolve the velocity forward in time using the trapezoidal rule, though

increased stability can be obtained with backward Euler.

7.4.1 Strain Limiting

Complex head motions can cause severe stretching especially in springs which have

one of their two endpoints constrained to a character’s head as seen in Figure 7.6(a).

To alleviate high strain in cloth, [123, 15] used strain limiting approaches that apply

momentum conserving velocity impulses to particles attached by springs that exceed

10% deformation. Since correcting one spring potentially damages another, iteration

is typically used. Since hair is relatively light compared to the head, we employ a

biased strain limiting approach that marches from the root of the hair and projects

the length by moving only the particle further from the root in the direction formed

by the two particles. For the extra particles from the subdivision and perturbation

in Section 7.3.1, we also project one of their two edge springs (the one closer to the

root). Iteratively, once we find a new candidate position, we apply a velocity impulse

to the vn+1/2 velocity to achieve that position. Note that the strain limiting in step 2

above only affects the velocity used to update the positions and has no direct effect on

the velocity used for evolution in steps 5-9. One might alternatively suggest using an

extremely stiff spring with a fully implicit integrator, however, implicitly integrated
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(a) Basic Mass/Spring (b) Our model (c) Our Full Model
(No self-interactions)

Figure 7.6: A tuft of hair simulated with (a) a basic mass spring model with no tor-
sion springs or self-interaction, (b) our mass-spring model including altitude springs,
implicit springs and strain limiting, and (c) our mass-spring model with self-adhesion
and self-collisions. Note in (a) the long straight hairs that extend from the scalp to
the neck actually represent one spring which is severely stretched. Also note how
much more realistic (c) looks with the addition of self-collisions and stiction.
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Figure 7.7: Interpolation midway between two key frames is shown using three meth-
ods: (a) näıve linear interpolation, (b) Kim and Ko’s one sided Eulerian evolution
and (c) our new two-sided evolution interpolation.

stiff springs cause an implicit solve to converge slower. One could also use a method

similar to [55], which would also likely be more expensive than strain limiting.

7.5 Interaction and Collisions

7.5.1 Body Collisions

We represent object collision geometry as a level set signed distance function which

is negative inside and positive outside. Body collisions (and friction) proceed as

described in Section 6.5 with any intersecting point having its relative normal veloc-

ities constrained to prevent collision during the second backward Euler solve in step

7. As collisions can flatten the structure of hair, flattening curls, a fold preservation
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approach similar to theirs might be useful. As the head and torso are undergoing com-

plex motion we create level sets at 60 frames per second (the frequency of our motion

capture data). To represent level sets at an arbitrary time t, one could näıvely linear

interpolate from the closest two frames. Instead we employ a semi-Lagrangian advec-

tion based interpolation scheme similar to [86]. Using their scheme directly produces

a discontinuous interpolation (not a problem for motion blur) as they only evolve

forward from a time tn. Instead we use the nearest two frames, interpolating forward

and backward evolution via φ(x, α) = (1−α)φn(x−∆tαv)+αφn+1(x+∆t(1−α)v)

where v = (vn(x) + vn+1(x))/2 with the collision body velocities vn and vn+1, and

α ∈ [0, 1] is the interpolation fraction. See Figure 7.7.

7.5.2 Stiction

Hair/hair interaction effects include friction and static charge adhesion which cause

hair to stick together. In fact, the tendency of hair to merge together is one of

the motivations for wisp and clump models. Springs can be useful for making and

breaking dynamic constraints as in [80]. Similar techniques were then used in cloth

[16] and articulated rigid bodies [30]. These techniques also were applied to hair

in [20] (though they do not dynamically create new connections) and [171, 172] for

wet and styled hair (though connections were created only in response to interactive

styling product application).

We created a stiction model in the same spirit as the approaches listed above.

First, we create segment pairs when the shortest vector between two edges is less

than a distance threshold εs. Then we store the interpolation fraction along each

segment (thus defining two embedded nodes) and create a spring between them that

has restlength εs (making a segment pair resist not only being pulled apart but also

being compressed together). These springs are maintained with the same embedded

node locations until the length of the spring exceeds a separation threshold. For

efficiency, we search for pairs of segments using a bounding box hierarchy containing

each segment, and we only allow n connections to be formed to a segment by using a

max heap to keep the n closest segments to any given segment.
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Connections may be broken as hairs separate beyond the distance threshold. [171]

broke connections after a force threshold was exceeded, but we avoid this, as it could

improperly break a connection when two hairs are forced together. Other authors

typically reduce the spring stiffness with distance to model different hairs separating

at various times. We do not do this because we observed that real hair tends to

exhibit discontinuous separation behavior (see Figure 7.4(c)) which is explained by

the concentric scales that comprise a hair (see e.g. [127]). This is an example of one

of the departures we make in modeling individual hairs as opposed to clumped or

continuum models.

Adjusting stiction parameters allows a user to model various hair behaviors. For

example, extra spring connections for stickiness along with a heavier mass could

be used to model wet hair (see references above). Hair can also be made more or

less clumped by varying the number of connections and the stiffness. Additionally,

hair volume can be increased by using larger restlengths and stiffnesses. Doing so

would retain a similar time step, as stiffer springs reduce the time step while longer

restlengths increase it. Moreover, increasing the volume would cause hairs to be

further apart, reducing the number of collision pairs—making the simulation easier.

This is akin to the effect that repulsions have in the [15] algorithm, where they reduce

the need for more expensive geometric collisions. However, one potential hazard of

increasing the restlength is that springs become more directionally biased which could

affect rotational stability, but this might be remedied by using a tetrahedron based

stiction force akin to our constitutive model.

7.5.3 Self-Repulsions and Collisions

For self-repulsions and self-collisions we use the same techniques as those presented in

Chapter 6. However, we note that while cloth interpenetration produces an obviously

invalid state, any hair state is collision-free, and self-collisions are only apparent

during motion. Thus, added computational efficiency can be achieved by ignoring

some collisions; in fact we do not use rigid impact groups [123]. In that vein, we found

that the stiction approach described above greatly reduces the number of edge/edge
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collisions but unfortunately also has the effect of bringing edges closer together causing

many false positives to be detected. Thus for efficiency and robustness, we ignore

collision pairs that have a stiction connection. A comparison between Figures 7.6(b)

and 7.6(c) illustrates the improved realism due to stiction, self-repulsions and self-

collisions.

7.6 Examples

We have produced a number of examples ranging from a single hair, a tuft of hair,

and a full head of hair. We employ the standard [81] anisotropic reflectance model

and use deep shadow maps [94]. One could also use the more accurate reflectance

and scattering models of [98, 105]. We stress that we do not create any additional

hair geometry at render-time, only rendering what we simulated.

We built a head and torso geometry by combining a laser scan of a head with the

torso from the Visible Human Data Set [157]. We captured realistic and highly dy-

namic motion using an optical motion capture system. The resulting motion capture

skeleton was used as a boundary condition for a quasistatic flesh simulation [149],

and the triangulated mesh was deformed by barycentrically embedding each vertex.

Each frame of the surface was then rasterized to create a level set for head and torso

collisions. To grow hairs, we painted hair densities and seeded points using [156]. The

first few points at the hair root were embedded in the head model barycentrically to

obtain a full coordinate constraint.

Particle Avg m/ % % %
Hair Type Count frame Newmark Collide Stiction
Curly 250k 4 m 44 % 10 % 20 %
Straight short 500k 10 m 70 % 3 % 13 %
Straight short wind 500k 12 m 70 % 9 % 13 %
Straight long (5k) 500k 17 m 64 % 16 % 14 %
Straight long (10k) 1,000k 38 m 64 % 3 % 21 %

Table 7.2: Performance of simulating various hair types. We provide time/frame as
well as a percent breakdown between time integration, collisions and stiction.
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We simulate full heads of hair in three different styles: long straight (Figure 7.11),

medium straight (Figure 7.9) and long curly (Figure 7.10). In addition to body and

head motion we also show hair affected by external forces such as wind in Figure 7.8.

These examples illustrate clumping behavior as well as stray individual hairs giving

a multiresolution feel that is difficult to capture with clumped or continuum models.

The typical time steps were 6 × 10−4 s, although we chose our time step adaptively

based on the strain rate and Courant condition.

We ran our examples with one to four quad processor Opteron machines in as little

as a few minutes per frame to as much as an hour per frame, when highly dynamic

motion capture data strained the system. Large examples (shown in Table 7.2) used

four machines and smaller examples used one machine. Parallelization was carried

out in a straightforward manner discussed in Chapter 8. Simulation time (shown

in Table 7.2) varies based on the velocities of the underlying head animations and

wind forces even though the number of segments and time step is the same (required

CG iterations may change). Note the “straight long” example where we ran 5k and

10k versions shows that doubling the number of elements approximately doubled

the time which we found encouraging as conjugate gradient has larger than linear

complexity. Comparing these numbers to other published results is not especially

meaningful because of different hardware and levels of optimization. Also, since our

examples have many more elements than others’ examples, we typically do not fit

into either L1/L2 cache so a linear speedup of other methods should not be expected.

Furthermore, we used high velocity motions which will make convergence slower than

lower velocity examples.

7.7 Limitations

We attempted to simulate as many hairs on the head as possible and in doing so we

generated many interesting, highly-detailed examples with up to a million particles.

Unfortunately, we did not manage to simulate 100k hairs. Architectural improvements

will naturally remedy this problem to some extent, but developing more efficient time

evolution and collision approaches is also important. Thus an obvious limitation is
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Figure 7.8: A simulation of 10,000 medium length straight hairs with 25 segments
each (500,000 total particles) on a stationary head while interacting with wind.

Figure 7.9: A simulation of 10,000 medium length straight hairs with 25 segments
each (500,000 total particles) on a character moving his head in a circular motion.
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Figure 7.10: A simulation of 5,000 long curly hairs with 50 segments each (250,000
total particles) on a character spinning around from back to front.

Figure 7.11: A simulation of 10,000 long straight hairs with 50 segments each
(1,000,000 total particles) on a character shaking his head from side to side.
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that simulating more elements is more expensive than sparse clumped models making

our method less suited for simulating hair in real time and less cost effective when a

high level of detail is not required or necessary.

Using the Bridson approach for self-repulsions and collisions (in particular our

variant from Chapter 6) is a limitation as it is primarily designed for interactions of

edges embedded in a surface. Although it can be used for hair collision, it is not an

efficient way of doing so as it has trouble with very complex stacking configurations

that sometimes occur in hair. In our model, we used stiction instead of collisions

for some pairs to help with this. This is analogous to Bridson’s use of rigid groups

when the correct collision responses could not be determined. Improving collision

response techniques in the presence of extreme stacking would allow us to apply col-

lision restitution to all pairs. One promising approach would be to use a tetrahedral

mesh together with altitude spring based techniques. This approach would also help

maintain hair shape (and volume) by preventing pointwise rotations during collision

response. Another issue is that wrinkles in hair tend to be flattened by body collisions

which could possibly be remedied by adapting the cloth fold preservation technique of

[16]. Our spring-based torsion model also contains some parasitic bending influence

which is analogous to some of the problems with linear bending spring models. Re-

search had led to the development of better non-linear bending models, but recently

bending approaches have come full circle by focusing on more efficient linear bending

models. Nevertheless, improved mass-spring torsion models would be an interesting

avenue of research.

7.8 Discussion

Our method departs from recent hair simulation methods in several ways. First,

we directly simulate every hair we render so we can capture all the DOFs needed

for high fidelity hair. We use a mass-spring model that also can capture torsion

which allows us to use standard time integration and interaction schemes. In order

to capture electrostatic attraction, we employ a per hair stiction and friction model
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whereas clumped models assume (and fix) the intra-clump interaction of hairs. Inter-

clump interaction is modeled, but only in the aggregate sense, limiting discontinuous

interaction behavior within clumps. Lastly, hair dynamics on aggregate models use

clumped mass instead of more physical small mass hairs (which we use).

Our method represents one extreme of the performance/quality tradeoff existing

between simulating individual hairs and simulating clumps or continuums. A practi-

tioner that desires to simulate hair chooses a technique in this spectrum to satisfy his

needs be them performance or fidelity. For example, in a film, a hero shot that needs

very detailed single hair behavior and interactions would use our technique, whereas

this is overkill for a character in the background. One might instead wish to use less

computationally expensive methods such as super helices because it can represent

interesting curly shapes with very few DOFs. In a film that requires stylized hair,

where uniformity is desired, a volumetric/continuum method such as [118] would be

ideal. In extremely time-limited scenarios such as a video game or simulator, an

approach such as [3] might be applied.

An interesting avenue of research is considering combinations of techniques so

that different levels of detail can be achieved in the same simulation. First, the

number of hairs could be varied in our method which among other things would

allow our method to be used in a clumped fashion to reduce computational cost.

Thus, all the techniques for interpolating rendering hairs would be useful. One could

also augment our interaction models with continuum approaches such as smooth

particle hydrodynamics [66], etc. Another promising approach would be to use faster

simulation techniques to iterate a basic look for a character. Then, our method could

be influenced by the guide hairs to produce a simulation with the art direction and

control of the coarser simulation and the intricate details of a large scale simulation.

In order to simulate 100,000 hairs, the bottlenecks at that particular resolution

must be considered. The stiffness matrix and unknowns for time integration increase

linearly in the number of hairs. Collision detection can theoretically scale poorly,

but in our long straight example going from 5,000 to 10,000 hairs, we found that

the relative percent of time on collisions (detection and response) went down, and

in all of the examples in Table 7.2, they were below 16% of total simulation time.



CHAPTER 7. HAIR SIMULATION 120

5,000 Hairs 10,000 Hairs

Figure 7.12: A comparison of a simulation with 5,000 hairs versus one with 10,000
hairs. Notice the significant improvement when doubling the number of hairs, and
that in this pose we would benefit from even more hairs.

Even though we skipped collision response for stiction pairs, we did detect all pairs

(including stiction pairs) using an axis-aligned bounding box hierarchy. As we scale to

100,000 hairs it is likely that although detection will not be a problem, more complex

stacking configurations will necessitate better collision response. However, we note

that detection might be sped by employing the acceleration techniques used in [168].

In conclusion, We have presented a novel mass-spring hair model with the goal

of simulating every individual hair on the head. Even though mass-spring models

have recently been unpopular, we have shown that they can in fact model torsion to

simulate hair effectively. However, the most immediate challenge is scaling the model

to more hairs. Figure 7.12 shows a simulation with 5,000 hairs compared to one with

10,000 hairs showing that double the number of hairs has a significant impact on the

simulation quality justifying our goal of simulating 100,000 hairs. We believe we have

taken important steps towards obtaining higher fidelity hair simulation, and we look

forward to future work.



Chapter 8

Parallel Simulation

In the past years, the rate of serial performance increase with new hardware has

slowed. Instead, computer architecture is increasingly relying on chip multiproces-

sors to obtain effective speedup. This has placed the burden of obtaining higher

performance to algorithm designers and software engineers. Consequently, parallel

algorithms for physical simulation need additional attention. While, most super com-

puting applications typically consider parallelism, most practitioners outside the high

performance computing community typically do not. Algorithm designers need to

start evaluating their techniques through the lens of future parallelism. In this chap-

ter we describe how some of the algorithms previously described in this dissertation

are parallelized.

Parallelizing physical simulation applications typically requires spatial decompo-

sition. This is because methods typically step forward from an initial time, and each

future time is dependent on the result of each previous method. This presents a

challenge, because the overhead of parallelism usually means that speedups cannot

be achieved without increasing the problem size. Fortunately, for most visual effects

applications, this is acceptable as practitioners usually are simulating with too little

resolution to start with. However, making applications more real-time is much more

challenging. In this discussion we focus on distributed memory parallelism which is

typically higher overhead, but allows the simulation of very large problem sizes. The

decomposition techniques outlined here are of course still applicable to shared memory
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systems. We point the interested reader to [73], an analysis of physical applications

on massively multi-core shared memory systems.

As an outline, we mostly follow the approach of transmitting data read dependen-

cies of a computation, so no write synchronization hazard exists. This model usually

wastes some computation and data bandwidth in exchange for less complicated syn-

chronization.

8.1 Fluids Parallelism

Distributed memory computation for fluids has been very common in the high per-

formance computing arena. In particular, compressible flow which is typically solved

in a fully explicit manner is easy to parallelize with simple domain decomposition.

In this discussion, however, we describe the parallelization of incompressible flow and

consider the parallelization of the particle level set method.

8.1.1 Advection Equations

Consider the parallelization of advection (Equation 2.1) using the semi-Lagrangian

method. We divide a uniform Eulerian grid into several non-overlapping pieces. Each

piece is assigned to a single processor and can border up to 8 other domains (if you

include corners). Each piece is responsible for updating only the grid points within it.

The semi-Lagrangian backtrace ray may lead to a point that requires interpolation

from grid points not owned by the processor, requiring the use of external data. How-

ever, this is similar to the problem of an interpolation point lying outside the domain.

For that problem, we typically use an array with extra ghost cells on each edge of the

domain. We can do the same here, but instead of filling the boundaries with domain

boundary conditions, we use MPI to transmit data from another processor. Then,

since each grid point is updated on the processor owning the sub-domain it belongs

to, there is no write contention or synchronization issues.
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8.1.2 Incompressible Solve

To make an incompressible velocity field, a Poisson equation is solved, which can also

be done in parallel. Conjugate gradient requires matrix multiplies and scalar opera-

tions. The matrix multiplies can be computed so that the vector result is computed

partially on each processor, however, the data dependencies of the matrix row (the

non-zero entries) must be synchronized with an MPI message before this. This cor-

responds to neighbors cells on other processors, so it is very similar to the advection

ghost region. In addition, reductions for the dot product and convergence can be

computed using MPI’s reduce facilities.

One complexity of parallel incompressible solves is that the very commonly used

Incomplete Cholesky Preconditioner cannot easily be computed in parallel. To avoid

this, we form and compute the preconditioner independently on each processor. While

this avoids the need for parallel application of the preconditioner, it does reduce the

convergence rate near the boundary. For incompressible solutions we found this not

to produce visual artifacts for unconverged results, however, in the case of implicit

viscosity (see e.g. [125]), we did need to increase the maximum iterations. For SMP

based parallelism a good option for computing the preconditioner in parallel is a

red-black block decomposition of the LU forward and backward solves as in [78].

8.1.3 Particle Level Set

Parallelizing the Particle Level Set Method requires parallelizing the Level Set oper-

ations and the particle operations. For the level set operations, the level set equation

is simply an advection equation which is solved in parallel with the methods above.

Redistancing the level set also requires a parallel implementation. The reinitializa-

tion equation [131], can be solved explicitly using the same techniques as advection,

however, this method is typically much slower than the fast marching method (FMM)

[136]. Unfortunately, FMM uses a heap to keep track of which distance to update

next, which is not easy to parallelize. A fine-grain locking of a shared heap might pro-

duce good speedups if we were parallelizing for an SMP machine, but for distributed
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memory this approach is less desirable. Thus, we consider domain decomposition ap-

proaches. [69] considered domain decomposition approaches to FMM, but they used

a complicated rollback scheme when closer data became available. Instead, we use the

fact that for fluids we typically only care about a small bandwidth of correct signed

distance values. Thus, we can compute independent sequential fast marching on each

processor as long as a large enough synchronized ghost region is used. In general,

if we want k cells of correct sign distance bandwidth, we need only dke ghost cells

duplicated from neighboring domains. This is because distance any distance charac-

teristics beyond that ghost region could not reach the subdomain within the k cell

distance. While this requires redundant computation in the boundaries, redundancy

only scales with the square (surface) rather than the cube (volume). Incidentally,

this approach does not use knowledge of the redistancing method, unlike the Her-

rmann scheme, so we could also replace each serial fast marching operation with a

non-pointer based scheme like the fast-sweeping method [182]. The paralellization of

level set extrapolation uses exactly the same technique.

Particles must also be handled in parallel, which is also handled through domain

decomposition. Particles belong to one and only one sub domain which handles their

evolution using the interpolated velocity field (using the same ghost cells as level set

advection used). After evolution, particles may land in another sub-domain, to which

they are then transfered via MPI. However, escaped particles also must be used to

modify the Eulerian level set. This is accomplished by temporarily synchronizing

particles to neighboring domains if they are close enough to modify the level set

equation. These particles are tracked separately so that they can be deleted from

processors that do not own them after the modify step.

8.2 Solids Parallelism

In graphics, there has been much work on shared and distributed memory parallelism

for cloth simulation (see e.g. [83, 153, 154, 90, 129, 181]). Here we outline the basic

approach we take toward parallelizing individual parts of a solids solver.
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Figure 8.1: Cloth folding over itself, creating new data interdependencies.

8.2.1 Time Integration

Parallelizing time integration is one of the most important parts as, with increasing

resolution, time integration begins to dominate simulation time. We spatially decom-

pose our problem by partitioning nodes of the mesh into disjoint sets which are each

assigned to a single processor. Mesh decomposition can be achieved in many ways, we

typically use a simple recursive median split approach to give a power-of-two parti-

tions with the same number of particles that are somewhat near to each other. Better

approaches view the particle interdependencies as a graph, minimizing the number

of edges connecting disparate partitions while at the same time considering spatial

proximity for optimizing collision and contact communication. As a solids simulation

proceeds, different particles might become close, and so one might repartition period-

ically (although we did not). See Figure 8.1 for an example where a cloth folds over

and previously unconnected particles are now in contact.

Time integration is performed in parallel, by each processor having the full set of

particles for the whole simulation, yet only computing forces for particles it owns. To

evaluate forces, sometimes a processor will need time tn data about particles owned

by other processors. To determine what communications are necessary before force

computation, each force helps build up a direct dependency graph between all the

particles as a preprocess. This dependency graph is used to cache lists of where

particles need to be transmitted before a force computation. A force element is

computed on a given processor if it has at least one particle that needs the result of

that force. For example, a linear spring between two particles on separate processors

implies a data dependency, so before a force is computed each processor will get a
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copy of the particle position and velocity of the particle it does not own. Then the

force will be computed on both processors (obtaining the same result) and applied to

their copies of the two particles even though each processor was only responsible for

one of the particles.

Conjugate gradient is performed in parallel in a straightforward way. In particular,

each processor has only a partial notion of the matrix (the forces it contributes to).

The scalar quantities that conjugate gradient needs are obtained through parallel

reduction operations using the MPI library.

Outputting data to disk is a simple matter of performing a gather to the root

processor. Since we take many steps for every frame we produce, this serial process

does not adversely limit scalability.

8.2.2 Repulsions and Collisions

Recall the time integration scheme that was modified for collisions and repulsions

in Section 6.2. In step A and B of the outer loop we need to do searches for pairs

of interacting objects so we use axis-aligned bounding box searches [158]. We syn-

chronize the position data to every processor so each can construct a full hierarchy

for points, segments, and triangles, which we use for doubly recursive traversals on

every processor. Point/triangle interaction pairs are obtained by colliding the point

hierarchy with the triangle hierarchy and edge/edge pairs are obtained by colliding

the segment hierarchy against itself. We assign the detection of each potentially in-

teracting pair to the processor of lowest index that owns one of the involved particles.

Each processor searches for its assigned interaction pairs by pruning pairs of boxes

whose expansion only contains interaction pairs assigned to other processors. Thus

we avoid searching down branches of the Cartesian product tree if any interactions

found would be owned by other processors.

Applying repulsions or collision responses must also be parallelized but it is im-

portant to make sure pair response is done in Gauss-Seidel ordering. That is, each

pair should be processed seeing the newest data that is available, so the effect of

any previously applied repulsion is used in any subsequent repulsion with which it
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shares nodes. If response is done instead in Gauss-Jacobi order then impulses may

be counted multiple times. While others [153] have have discussed parallelization of

cloth, these papers have not discussed the importance of collision response ordering.

Thus our parallel algorithm proceeds in two passes whenever we wish to apply a

collision or repulsion set. We label interaction pairs (point/triangle or edge/edge)

involving particles owned by different processors as boundary pairs and label those

owned by only one processor as internal pairs. Using a flood-fill algorithm, each

connected component of boundary pairs is processed separately (in parallel) in the

first phase noting that a Gauss-Seidel ordering is still used within each connected

component. Next in the second phase, modified particle velocities are sent to the

processors that own the respective particles, and the remaining internal pairs are

processed (again in Gauss-Seidel order) independently by the processor that contains

them. See Figure 8.2 for an illustration of this application strategy. Note that this

strategy always ensures the effective parallel ordering is equivalent to some serial

Gauss-Seidel orderings. We note that repulsion pairs, boundary pairs and internal

pairs are discovered and transferred to the appropriate processors in step A.1 and are

used many times in step B.2 and B.8.

Figure 8.2: Parallel collision/repulsion pair Gauss-Seidel ordering. Phase I consists
of each connected component of boundary pairs being processed (middle). Phase II
computes all internal pairs using the new data from the boundary pair processing.
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8.2.3 Solids Analysis

We have used the parallel solids extensively for large simulations of cloth, such as

those that were presented in Section 6.6. In Figure 8.3, we show an example of par-

allel speedup. As you can see we obtain speedup up to 8 threads, but it declines

rapidly. This is probably due to our slow gigabit interconnect between machines in

our cluster. Modern multicore machines will soon have 16 cores per machine, mak-

ing performance much better. In addition, connected component analysis could be

performed on repulsion and collision boundary pairs so they would all need not be

done in serial on one processor. In the future, we hope to perform hierarchical paral-

lelism using data-level parallelism (SSE), thread-level parallelism (SMP), as well as

distributed memory parallelism (MPI) together, so that we can optimally exploit all

of the parallel opportunities that modern hardware provide. Such multi-tier paral-

lelization approaches are becoming more important, and researchers have begun to

study programming techniques for them (see e.g. [44]).

8.3 Conclusion

We have described parallel techniques used for solving both solids and cloth. As

architecture evolves, algorithm designers will need to take increasing responsibility for

algorithms that adapt well to common architectures. While our use of parallelism has

not been entirely successful at increasing the performance of small problem sizes, we

have found it useful for the simulation of high fidelity phenomena that was previously

intractable.
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Figure 8.3: Comparison of performance of curtain and ball simulation (Figure 6.12)
with increasing numbers of processors. We also ran this simulation with 16 threads,
though there was not a significant speed up over 8 threads. This is most likely due
to our slow gigabit ethernet interconnect.



Chapter 9

Conclusions

In this dissertation, several novel algorithms for solid and fluid simulation have been

presented. While these approaches touched traditionally separate area, they all fol-

lowed a few common themes. In particular, the necessity to use the most appropriate

primal representation for a phenomena by using specific domain specific knowledge

is most important. Nevertheless, even appropriate primal representations sometimes

required augmentation by a complementing auxiliary representation. In Chapter 2,

we used Lagrangian characteristics to gather future Eulerian data for the solution of

advection equations. Then, in Chapter 3, we used vortex particles to track vorticity

concentrations and reintegrated them into the grid. In Chapter 4, we used Lagrangian

solids with ray tracing to define dynamic boundary conditions and one-sided interpo-

lation for coupling thin objects to Eulerian fluids. Chapter 6, we used less accurate

but fast repulsions together with more accurate but slower geometric collisions. In

Chapter 7, we used volumetric tetrahedral methods for simulating hair segments to

track torsion. Such hybridizations have become quite common and will continue to

be, as researchers attempt to solve remaining simulation problems.

Besides hybridization, another theme is choosing algorithms not because they are

high order, but because they can produce high fidelity results. High order methods are

better than low order methods only in convergence, but since simulations are typically

run coarsely, convergence is not near. In these cases, a method that is low order but

has a low error constant, can do better than a high order method. For example,
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we introduce a 2nd order advection scheme in Chapter 2, but we produce a coupled

Lagrangian/Eulerian solver that can produce detailed simulations in Chapter 3. Also,

high order accuracy does not help with discontinuous phenomena such as boundary

conditions or collisions. In the cloth and hair examples, we used low order constitutive

models so we could simulate very high resolution meshes and highly detailed collisions

and interactions.

There are many other avenues of future work in physical simulation, and we have

presented some of them in the individual chapters, so here we consider more general

problems. The most obvious and probably most important future work is all-way cou-

pling between solvers. The work of Chapter 4 was used for two-way coupling of fluids

and solids in [60]. More recently, other work has considered two-way coupling of fluids

with solids [128] and two-way coupling of deformable solids with rigid solids [137].

These works take steps in the right direction, but future work must go further by

more tightly integrating time integration, collisions and all other parts of simulation

algorithms. Lagrangian and Eulerian representations must be able to interact better

and more seamlessly and collision handling must be fully general. Besides coupling,

another obvious avenue of future work is increased interactive performance of simu-

lation techniques while maintaining high quality results. This will be eased by the

use of parallelism together with commodity chip multiprocessors, but like real-time

rendering compared to offline rendering, this might require specialized algorithms. Of

course, physical simulation can always benefit from additional resolution and fidelity,

so additional work on highly turbulent flows, better collision algorithms, and better

constitutive models, remains important.

All of the techniques presented in this thesis were demonstrated through simula-

tions that were judged based on their visual plausibility. In particular, examples were

shown that were plausible, that is belonging to the set of possible simulations in the

world. This shows that we are simulating with a valid model and solving it sufficiently

well for our purposes. That is to say, the simulator can produce a subset of the set

of visually plausible phenomena. A much more challenging problem is obtaining the

particular plausible situation subject to some additional constraints. Not only does

this require a method that can choose the proper plausible simulation result, but it
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requires that the simulator can produce all the desired plausible phenomena. Thus

the quality of a simulator must be even better to allow this type of control. This

perhaps will lead to a fully controllable and realistic virtual world.
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