
Cartoon Rendering of Smoke Animations

Andrew Selle∗

Stanford University
Alex Mohr

Pixar
Stephen Chenney

UW Madison

Abstract

We describe a technique for generating cartoon style animations of
smoke. Our method takes the output of a physically-based simu-
lator and uses it to drive particles that are rendered using a variant
of the depth differences technique (originally used for rendering
trees). Specific issues we address include the placement and evo-
lution of primitives in the flow and the maintenance of temporal
coherence. The results are visually simple, flicker-free animations
that convey the turbulent, dynamic nature of the gas with simple
outlines.

CR Categories: I.3.0 [Computer Graphics]: General

Keywords: smoke rendering, smoke simulation, cartoon render-
ing, non-photorealistic rendering

1 Introduction

Consider a puff of smoke. A cartoonist might draw a swirly bound-
ary with a solid white interior, and maybe some internal swirls. A
photograph of smoke reflects complex volumetric light interactions,
driven by the equations of fluid dynamics. For stylized animations
we prefer the abstract, swirly form, while for special effects a pho-
torealistic result is desired.

This paper describes a technique for cartoon rendering of ani-
mated smoke. Our aim is to generate stylized animations such as
the one shown on the left in Figure 1, which conveys the turbulent,
fluid nature of the gas using only solid blocks of color and hard
silhouettes. Our method is driven by the output of a physically-
based simulator, ensuring that the animated flow is consistent with
gaseous behavior. We also have access to physical properties of the
flow, such as density, which we can use to modify the rendering as
in Figure 1.

Our contribution is a method for producing an artistic, animated
smoke rendering from a physically-based simulation. The simula-
tor (in our case Fedkiw et. al.’s [2001] algorithm) ensures that the
basic fluid motion is plausible; the velocity field evolves correctly,
mass is conserved, and scalar fields such as pressure and temper-
ature are consistent. We embed particles in the fluid and advect
them with the flow. These are then rendered using an extension
of Deussen and Strothotte’s [2000] depth differences tree rendering
technique. Particle primitives are rendered and then pixels whose
depth differs significantly from their neighbors are drawn as sil-
houettes. Several innovations were required to adapt the basic al-

∗email: aselle@cs.stanford.edu

Figure 1: Left: frame from a fluid animation generated by our
system, in an abstract rendering style reminiscent of hand-drawn
smoke and clouds. Right: another frame from our system, colored
by velocity magnitude. Our stylized renderings capture the same
sense of billowing, turbulent flow as photorealistic smoke.

gorithm to smoke animation, including a method for evolving the
primitives to reflect properties of the flow (densities, temperatures,
etc.), shaping and orienting particles dynamically to convey infor-
mation, and strategies for maintaining temporal coherence.

1.1 Related Work

Particle systems are typically used to simulate and render smoke in
real time applications, such as computer games. Procedural rules
guide the evolution of billboard particles that are blended together
to give the appearance of smoke. A stylized look can be achieved
using non-photorealistic billboards; Lamorlette and Foster’s [2002]
fire modeling work is a very high quality example of this approach.
An alternative for stylized rendering is advected non-photorealistic
textures [Witting 1999; Neyret 2003], in which a texture is de-
formed by the flow. This approach, however, typically removes
detail as the flow evolves and the texture mixes.

Our target styles, however, require hard edges in some regions
to define the shape and motion of the flow, but in coexistence with
large low detail regions. Blended billboard or texture approaches
cannot easily produce this result: rendering hard-edge billboards
will produce unnecessary detail in the middle of the cloud, while
soft edge billboards would fail to define the edges. It is similarly
difficult to define textures to capture this effect and maintain it as the
flow evolves. Billboard particle systems have the second disadvan-
tage of requiring a particle-based procedural model of the smoke’s
motion, which is not always easy to derive. While our work is at
heart a particle-based approach, we use physically-based simula-
tions to ensure plausible flow, and for the first time apply a depth
differences algorithm to the rendering of smoke billboards.

Yu et. al. [2000] describe a procedural model for generating still
images of cartoon smoke. They define a spine for the smoke-trail
consisting of a sine curve with frequency and amplitude that in-
creases with height from the source. Their model only applies to



smoke rising from a source (a cigarette or smokestack) and is not
designed for animation.

There has been extensive work on the photorealistic render-
ing of smoke and other gaseous flows. Fedkiw, Stam and Wann
Jensen’s [2001] work represents the current state of the art in pho-
torealistic smoke. This and other methods [Kajiya and Von Herzen
1984; Gardner 1985; Sakas 1990] simulate or approximate the scat-
tering, emission and adsorption of light by smoke particles. These
methods are slow compared to billboard and texture approaches,
and it is not clear how to adapt them for stylized renderings.

Non-photorealistic rendering has previously been applied to the
problem of visualizing fluids, with the aim of improving a viewer’s
understanding of the underlying physics. Kirby, Marmanis and
Laidlaw [1999] encode a range of flow-derived variables in both
the strokes and layers of a painting. For example, stroke size
and orientation shows the velocity field magnitude and direction,
while an under-painting shows the vorticity direction. Healey and
Enns [2002] present weather data visualizations that use texture and
stroke to convey information. While these techniques produce im-
ages that are both visually appealing and scientifically useful, we
aim for a more abstract representation that explicitly hides infor-
mation in the rendering.

The following section discusses the details of our technique.
Section 3 and our video show some results, while Section 4 dis-
cusses the limitations of our work and suggests directions for im-
provement.

2 Implementation

Our smoke rendering system consists of three main components: a
simulator for driving the motion of embedded smoke particles and
associated scalar fields (such as temperature); a rendering system
that uses depth differences [Deussen and Strothotte 2000] to draw
the particles in a cartoon style; and an interface layer that manages
the evolution of the particles over time.

2.1 Smoke Simulation

The smoke simulator must produce motion for the smoke particles,
as well as associated data such as temperatures. Particle systems
are one common approach to this problem, having the advantage
of intuitive parameterized control. However, for a general purpose
smoke simulator it is unclear how to create realistic rules that cap-
ture all the possible effects while retaining usability. The need to
track scalar fields adds further complications.

Physical models have the advantage of producing realistic par-
ticle motion and any associated parameters. Recent advances in
physically-based fluid simulations have made them a viable method
for real-time smoke animation. In particular, Stam’s [1999] semi-
Lagrangian stable fluids has made smoke simulation more robust
and less error-prone. Fedkiw, Stam and Wann Jensen [2001] im-
proved upon Stam’s approach. For larger simulations, Rasmussen
et. al.’s [2003] layering approach enables efficient, realistic simu-
lation. Finally, Treuille et. al. [2003] introduced a method for the
key-frame control of smoke simulations.

We generate our smoke motion with the physically-based
method of Fedkiw et. al. [Fedkiw et al. 2001]. However, we re-
quire only the output of a smoke simulator – we do not modify the
simulation algorithm – so any procedural or physically-based ap-
proach could be used with our system if it generates the required
data.

To generate a particle set, we simply run the smoke simula-
tion introducing massless marker particles periodically at the smoke
source. These particles are advected through the simulation veloc-
ity vector field using Euler integration. Position, velocity, and den-
sity are linearly interpolated from the simulation grid. This is easy

z=3a

z=a z=a/2

First Pass Second Pass

Figure 2: The image on the right shows the result of the depth dif-
ferences algorithm performed on the left image with threshold value
γ = a. Note the pixels with depth difference greater than γ are col-
ored black.

to implement because semi-Lagrangian solvers already include par-
ticle tracing as one of the basic building blocks of the simulation.

2.2 Rendering

To produce a cartoon style rendering we must generate sharp silhou-
ettes at interesting points in the smoke, but otherwise use constant
color chunks to indicate the body of smoke. It is particularly im-
portant to use the silhouettes to convey the appearance of turbulence
and vortices.

Particle based renderings are advantageous in that, moving in
concert, they tend to capture rapid changes such as turbulence and
vortices. One approach might be to identify the interesting particles
in the smoke and restrict silhouette rendering to those. However, it
is difficult to identify such regions by looking at only one particle
at a time. It is also not clear how to set the thresholds for interesting
behavior, as these might change throughout the simulation.

An alternative is to forgo particles and work with isosurfaces de-
rived from the simulation. The silhouettes of such surfaces could be
rendered directly. However, isosurfaces are not well resolved from
the relatively coarse grid of a physically-based simulation model,
and particle-system models are ruled out entirely. Additionally, us-
ing an isosurface makes the implicit and incorrect assumption that
all the interesting behavior of smoke occurs at a small, readily de-
fined set of isovalues.

Our system works with particles, but employs a global algorithm
to find places where silhouettes should be drawn. We adapt the
depth differences technique originally introduced by Deussen and
Strothotte [2000] for generating pen-and-ink illustrations of trees.
A rendering primitive, such as a disk, is associated with each par-
ticle and rendered to the depth and color buffers. A second pass
looks at the depth buffer for every pixel. If the central differ-
ence of the depth buffer z across any of its four faces exceeds the
depth threhsold γ then its color is set to black as shown in Fig-
ure 2. Specifically, the color of pixel i, j is overridden to be the
silhouette color (e.g. black) if

∣

∣

∣

zi+1, j−zi, j
∆x

∣

∣

∣
> γ or

∣

∣

∣

zi, j−zi−1, j
∆x

∣

∣

∣
> γ or

∣

∣

∣

zi, j+1−zi, j
∆y

∣

∣

∣
> γ or

∣

∣

∣

zi, j−zi, j−1
∆y

∣

∣

∣
> γ . Otherwise, the color from the first

pass is retained.
We created a range of smoke primitives including a circle cloud,

a puffy cloud, and a “hairy” cloud shown in Figure 3. We use
OpenGL to rasterize these primitives and read back the color and
depth buffers to perform the depth difference computation.

The depth differences algorithm works well on a single frame,
but when applied to an animated sequence distracting visual arti-
facts may be introduced. These arise when there are sudden shifts
in silhouettes edges due to primitives crossing the depth difference
threshold as they move forward and backward. Advecting primi-
tives in the flow removes most of these artifacts because, when the
flow is coherent, the depth switches will not cause flickering. Inco-
herent flow will still cause flickers, but in our case that corresponds
to turbulence and vortices – precisely the locations where high fre-
quency effects are desirable.



Figure 3: Three different stencils used as rendering primitives, and
the resulting images.

Figure 4: Velocity direction and magnitude’s effect on particle ren-
dering. Note the stretch is proportional to the velocity magnitude
while the orientation of the stencil is proportional to the angle.

Simple advected particles are not sufficient for high quality car-
toon renderings. One would like to eventually remove particles if
their density falls below a certain threshold. Simply removing the
particles will create jumps, so care is required in managing the evo-
lution of particles over time. Correspondingly, particles may not be
advected into all areas of density, so new particles should be added
in areas of sufficient density.

2.3 Simulation-Rendering Interface

To improve temporal coherence and give more flexibility to the ani-
mator we modulate particle drawing based on properties of the par-
ticles. The information our particles provide from the simulation
suggest intuitive controls to the look of our renderer. All these mod-
ulations are modeled as simple linear interpolation ramps, but more
complicated schemes are possible.

The density around a particle drives the particle size. The higher
the density the larger the particle and thus the more influence it has
on the final image. Conversely, as a particle diverges from the main
action of the simulation, it enters low density regions and thus is
rendered smaller. This not only conveys the influence of particles
but also helps temporal coherence. As the particle reaches lower
density regions, its resulting small size allows for its elimination
without causing a large temporal discontinuity.

The color of the primitive rendering can be modulated by either
temperature or density. For example, a nuclear explosion could be
modeled with a simulation. At the highest temperature, in the core
of the explosion, the color of the primitive could be red fading to
black as the soot cools. Or, at the highest density, the smoke could
be rendered black, while at the lower density the particle primitive
could be rendered white.

Figure 5: Two blobs of smoke colliding and forming a donut, show-
ing our renderer handles topological changes gracefully.

Figure 6: An explosion where the smoke is propelled sideways until
it cools and falls downward.

The velocity of the particle is used to determine both the rotation
of the primitive and the amount of stretch. While the primitive al-
ways faces the viewer, there is a degree of freedom in its in-plane
rotation which it is important to control. Keeping a fixed alignment
produces uninteresting renderings, while choosing it randomly per
frame produces temporal incoherence. Instead, we orient the sten-
cil in the velocity direction. In addition to maintaining continu-
ity, it also makes smoke direction changes more visually apparent.
Squash and stretch, first introduced to the graphics community by
Lasseter [1987] can be introduced by stretching the primitive in the
velocity direction. This approach to setting orientation and stretch
is similar to that used by Chenney et. al. [2002]. Figure 4 depicts
the effect velocity and angle have on stretch and orientation of the
rendered particle.

3 Results

We have simulated and rendered several examples to illustrate our
system. Each example started with the simulation of the target sce-
nario, and the results were subsequently fed into our renderer. One
of the chief advantages of our system is that it can render any smoke
behavior that can be generated with the smoke simulator.

In Figure 5, two separate clouds of smoke are propelled towards
each other. When they collide, they form a donut. This shows
that even when topology changes, our advected particles track the
change producing the proper rendering. In Figure 6, a cloud of
smoke is violently propelled horizontally. The darkness is propor-
tional to the magnitude of the particle velocity. Figure 7 depicts
smoke rapidly emitted from a source at the bottom of the frame.
As the smoke moves toward the top of the frame it collides with a
ceiling causing the smoke to turn over on itself, causing interesting
silhouette contours to form.

The smoke simulation required a maximum of 3 seconds per
frame on a 128,000 cell grid (40x80x40 for Figure 7) on a 3 GHz
Pentium IV. A 2D layered simulation could probably reduce this
to real-time performance. Our unoptimized renderer produced one
frame in about a second for a 640x480 image, varying with the
number of particles. This time could be reduced by implementing
the depth discontinuity algorithm in graphics hardware.



Figure 7: A smoke animation where the smoke rushes upward and collides with the ceiling causing the smoke to be pushed out and tumble
over itself. The top is rendered with color modulated by velocity magnitude while the bottom is the same sequence rendered with a fixed white
coloring.

4 Conclusion

We have introduced a technique for rendering stylized smoke. The
underlying dynamics of the smoke is generated with a standard
Navier-Stokes fluid simulator and output in the form of advected
marker particles. These particles are then rendered as texture
mapped 2D stencils, and silhouette edges are added using a depth
difference technique to emphasize shape and depth.

The most significant contribution of our technique is dispelling
the notion that physical simulation is incompatible with stylized
rendering. Indeed, animating smoke by hand is difficult due to the
complex, turbulent nature of fluids. Smoke simulation and realis-
tic rendering have successfully alleviated this difficulty for photo-
realistic applications. Our technique shows that simulation, when
combined with a stylized rendering technique, is similarly useful
for expressive applications.

Our technique has some limitations. There are several thresholds
and parameters to tune. However, while these parameters need to
be set, they also provide artists more control over the output. The
technique does not work well with varying viewpoints because the
feature lines will move as the “depth” direction changes, introduc-
ing artifacts due to the viewer motion, rather than the flow. Finally,
the 3D smoke simulations are relatively slow, taking several sec-
onds per frame. While layered 2D simulations could be used to
increase the speed, this problem suggests examining simpler meth-
ods that could replace the physical simulation. In particular, it is
unclear whether the full detail generated by the simulation is nec-
essary. Moreover, it may be possible to derive a fast procedural
model that captures the salient turbulence and billowing. Despite
these limitations, our system produces visually rich and compelling
stylized renderings.

Acknowledgments

This work was done at the University of Wisconsin – Madison.
Funding and equipment was provided by the NSF, Intel and Mi-
crosoft.

References

CHENNEY, S., PINGEL, M., AND IVERSON, R. 2002. Simulating cartoon
style animation. In Proceedings of Non-Photorealistic Animation and
Rendering (NPAR) 2002, 133–138.

DEUSSEN, O., AND STROTHOTTE, T. 2000. Computer-generated pen-and-
ink illustration of trees. In SIGGRAPH 2000 Conference Proceedings,
ACM SIGGRAPH, 13–18.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual simulation
of smoke. In SIGGRAPH 2001 Conference Proceedings, ACM SIG-
GRAPH, 251 – 260.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liquids. In
SIGGRAPH 2001 Conference Proceedings, 23–30.

GARDNER, G. Y. 1985. Visual simulation of clouds. In Proceedings of
the 12th annual conference on Computer graphics and interactive tech-
niques, ACM Press, 297–304.

HEALEY, C. G., AND ENNS, J. T. 2002. Perception and painting: A
search for effective, engaging visua lizations. IEEE Computer Graphics
& Applications 22, 2, 10–15.

JINHUI, Y., XIAOGANG, X., AND QUNSHENG, P. 2000. Computer gener-
ation of cartoon smoke. Journal of Computers 23, 9, 987–990.

KAJIYA, J. T., AND VON HERZEN, B. P. 1984. Ray tracing volume densi-
ties. In Proceedings of the 11th annual conference on Computer graphics
and interactive techniques, ACM Press, 165–174.

KIRBY, R. M., MARMANIS, H., AND LAIDLAW, D. H. 1999. Visualizing
multivalued data from 2D incompressible flows usi ng concepts from
painting. In Proceedings Visualization ’99, 333–340.

LAIDLAW, D. H. 2001. Loose, artistic “textures” for visualization. IEEE
Computer Graphics & Applications 21, 2, 6–9.

LAMORLETTE, A., AND FOSTER, N. 2002. Structural modeling of flames
for a production environment. In Proceedings of the 29th annual confer-
ence on Computer graphics and interactive techniques, 729–735.

LASSETER, J. 1987. Principles of traditional animation applied to 3D com-
puter animation. In Computer Graphics: SIGGRAPH ’87 Conference
Proceedings, 35–44.

NEYRET, F. 2003. Advected textures. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 147–153.

RASMUSSEN, N., NGUYEN, D. Q., GEIGER, W., AND FEDKIW, R. 2003.
Smoke simulation for large scale phenomena. ACM Transactions on
Graphics (TOG) 22, 3, 703–707.

SAKAS, G. 1990. Fast rendering of arbitrary distributed volume densities.
In Proceedings of EUROGRAPHICS ’90, Elsevier Science Publishers
B.V.(North-Holland), 519–530.

STAM, J. 1999. Stable fluids. In Computer Graphics: Proceedings of
SIGGRAPH 99, 121–128.

TREUILLE, A., MCNAMARA, A., POPOVIĆ, Z., AND STAM, J. 2003.
Keyframe control of smoke simulations. ACM Transactions on Graphics
(TOG) 22, 3, 716–723.

WITTING, P. 1999. Computational fluid dynamics in a traditional animation
environment. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, ACM Press/Addison-Wesley Pub-
lishing Co., 129–136.


